ibm云-scala.SparkR中的MatchError(带有Spark SQL的DataFrame)



我已经从Cloudant DB(IBM Bluemix Spark R Notebook)创建了一个DataFrame。我的数据帧结构:

root
 |-- c1_x: double (nullable = true)
 |-- c2_y: double (nullable = true)
 |-- c3_z: double (nullable = true)
 |-- name: string (nullable = true)
 |-- c11_x: double (nullable = true)
 |-- c12_y: double (nullable = true)
 |-- c13_z: double (nullable = true)
 |-- l1: double (nullable = true)
 |-- l2: double (nullable = true)
 |-- c21_x: double (nullable = true)
 |-- c22_y: double (nullable = true)
 |-- c23_z: double (nullable = true)
 |-- pre: long (nullable = true)
 |-- timestamp: string (nullable = true)
printSchema(payloadMessagesDF)
showDF(payloadMessagesDF) # Getting error
head(select(payloadMessagesDF, payloadMessagesDF$magnetometer_x)) # Getting error

我看到以下错误消息:

Error in invokeJava(isStatic = FALSE, objId$id, methodName, ...): org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 229.0 failed 1 times, most recent failure: Lost task 0.0 in stage 229.0 (TID 1625, localhost): scala.MatchError: -39.099998474121094 (of class java.lang.Double)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$StringConverter$.toCatalystImpl(CatalystTypeConverters.scala:295)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$StringConverter$.toCatalystImpl(CatalystTypeConverters.scala:294)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:260)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:250)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:260)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:250)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
    at org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:401)
    at org.apache.spark.sql.execution.RDDConversions$$anonfun$rowToRowRdd$1$$anonfun$apply$2.apply(ExistingRDD.scala:59)
    at org.apache.spark.sql.execution.RDDConversions$$anonfun$rowToRowRdd$1$$anonfun$apply$2.apply(ExistingRDD.scala:56)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
    at scala.collection.Iterator$class.foreach(Iterator.scala:727)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
    at scala.collection.AbstractIterator.to(Iterator.scala:1157)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1863)
    at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1863)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1153)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
    at java.lang.Thread.run(Thread.java:785)
Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at java.lang.Thread.getStackTrace(Thread.java:1117)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1837)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1850)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1863)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:212)
    at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
    at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
    at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1538)
    at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1538)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
    at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2125)
    at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1537)
    at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1544)
    at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1414)
    at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1413)
    at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2138)
    at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1413)
    at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1495)
    at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:171)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:95)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:55)
    at java.lang.reflect.Method.invoke(Method.java:507)
    at org.apache.spark.api.r.RBackendHandler.handleMethodCall(RBackendHandler.scala:141)
    at org.apache.spark.api.r.RBackendHandler.channelRead0(RBackendHandler.scala:86)
    at org.apache.spark.api.r.RBackendHandler.channelRead0(RBackendHandler.scala:38)
    at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
    at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)

我假设您使用的是cloudant连接器"com.cloudant.spark"我能够重现你的错误,但不是完全,但我看到了类型不匹配的错误,就像你一样。我创建了一个像你一样的云数据库。

{
  "_id": "242b9eda90bd1c66730c0313c20f1d4e",
  "_rev": "1-8ed1b69d2440e98d8186928b61bf834d",
  "c1_x": 10.678,
  "c2_y": 20.678,
  "c3_z": 20.678,
  "name": "vim",
  "c11_x": 20.678,
  "c12_y": 20.678,
  "c13_z": 20.678,
  "l1": 20.678,
  "l2": 20.678,
  "c21_x": 20.678,
  "c22_y": 20.678,
  "c23_z": 20.678,
  "pre": 2076677.6786767677,
  "timestamp": "1419038000"
}
{
  "_id": "ac6570b8a20e6d5c94430593e600cbd1",
  "_rev": "1-d78b053ae3383c9392e5f6c9377bb971",
  "c1_x": null,
  "c2_y": null,
  "c3_z": null,
  "name": null,
  "c11_x": null,
  "c12_y": null,
  "c13_z": null,
  "l1": null,
  "l2": null,
  "c21_x": null,
  "c22_y": null,
  "c23_z": null,
  "pre": null,
  "timestamp": null
}

{
  "_id": "78efe1ff33b8e67fe87dae43a5af516d",
  "_rev": "1-26e1e3a502477d9710de1110acd49891",
  "c1_x": "fsdf",
  "c2_y": null,
  "c3_z": null,
  "name": null,
  "c11_x": null,
  "c12_y": null,
  "c13_z": null,
  "l1": null,
  "l2": null,
  "c21_x": null,
  "c22_y": null,
  "c23_z": null,
  "pre": null,
  "timestamp": null
}

只有当某些文档中的值不正确时,才会出现错误。例如,第三个文档有"c1_x":"fsdf"。我相信com.cloudant.spark驱动程序或可能是SPARKSQL推断模式的方式是通过解释第一个文档的值。然后可能会将其简化为一般类型。

所以我建议两件事:-

  1. 修复数据库中的值

  1. 不要让sparksql自动推断模式,而是为您的模式提供字符串作为数据类型,然后键入cast-to-double

我希望它能有所帮助。

谢谢,查尔斯。

相关内容

  • 没有找到相关文章

最新更新