python-pandas:处理pandas数据帧的日期列中的NaT类型值



我有一个混合数据类型列的数据帧,我应用了pd.to_datetime(df['DATE'],coerce=True),得到了下面的数据帧

CUSTOMER_name     DATE
 abc                 NaT
 def                 NaT
 abc               2010-04-15 19:09:08
 def               2011-01-25 15:29:37
 abc               2010-04-10 12:29:02

现在我想应用一些agg函数(在这里,我想按mailid分组,并取Date的min((来查找mailid的第一笔交易的日期(。

df['DATE'] = [x.date() for x in df['DATE']]
#Here the value goes to 
 CUSTOMER_name     DATE
 abc               0001-255-255 ####how??
 def               0001-255-255  ###How??
 abc               2010-04-15
 def               2011-01-25
 abc               2010-04-10
#Then when i do a groupby and applying min on DATE
df.groupby('CUSTOMER_name')['DATE'].min()
#CUSTOMER_name     DATE
 abc               0001-255-255 ####i want 2010-04-10
 def               0001-255-255  ### i want 2011-01-25

所以,有人能建议一下,在转换为date((以及执行groupby和min((时,如何处理这个NaT,如何排除NaT进行计算。

如果对于任何customer_name,DATE字段中只有NaT,那么在groupby和min((中,我可以使用nan或Null值

假设您从以下内容开始:

df = pd.DataFrame({
    'CUSTOMER_name': ['abc', 'def', 'abc', 'def', 'abc', 'fff'], 
    'DATE': ['NaT', 'NaT', '2010-04-15 19:09:08', '2011-01-25 15:29:37', '2010-04-10 12:29:02', 'NaT']})
df.DATE = pd.to_datetime(df.DATE)

(注意,唯一的区别是添加映射到NaTfff(。

然后以下内容满足您的要求:

>>> pd.to_datetime(df.DATE.groupby(df.CUSTOMER_name).min())
CUSTOMER_name
abc   2010-04-10 12:29:02
def   2011-01-25 15:29:37
fff                   NaT
Name: DATE, dtype: datetime64[ns]

这是因为groupby-min已经在适用的情况下排除了丢失的数据(尽管改变了结果的格式(,而最终的pd.to_datetime再次将结果强制为datetime


要获得结果的日期部分(我认为这是一个单独的问题(,请使用.dt.date:

>>> pd.to_datetime(df.DATE.groupby(df.CUSTOMER_name).min()).dt.date
Out[19]: 
CUSTOMER_name
abc    2010-04-10
def    2011-01-25
fff           NaN
Name: DATE, dtype: object

这里有一个替代解决方案:

数据:

In [96]: x
Out[96]:
  CUSTOMER_name                 DATE
0           abc                    T
1           def                    N
2           abc  2010-04-15 19:09:08
3           def  2011-01-25 15:29:37
4           abc  2010-04-10 12:29:02
5           fff                   sa

解决方案:

In [100]: (x.assign(D=pd.to_datetime(x.DATE, errors='coerce').values.astype('<M8[D]'))
   .....:   .groupby('CUSTOMER_name')['D']
   .....:   .min()
   .....:   .astype('datetime64[ns]')
   .....: )
Out[100]:
CUSTOMER_name
abc   2010-04-10
def   2011-01-25
fff          NaT
Name: D, dtype: datetime64[ns]

解释:

首先,让我们创建一个具有截断时间部分的新虚拟列D

In [97]: x.assign(D=pd.to_datetime(x.DATE, errors='coerce').values.astype('<M8[D]'))
Out[97]:
  CUSTOMER_name                 DATE          D
0           abc                    T        NaT
1           def                    N        NaT
2           abc  2010-04-15 19:09:08 2010-04-15
3           def  2011-01-25 15:29:37 2011-01-25
4           abc  2010-04-10 12:29:02 2010-04-10
5           fff                   sa        NaT

现在我们可以按CUSTOMER_name分组,并为每组计算最小D

In [101]: x.assign(D=pd.to_datetime(x.DATE, errors='coerce').values.astype('<M8[D]')).groupby('CUSTOMER_name')['D'].min()
Out[101]:
CUSTOMER_name
abc    1.270858e+18
def    1.295914e+18
fff             NaN
Name: D, dtype: float64

并最终将得到的列转换为datetime64[ns]数据类型:

In [102]: (x.assign(D=pd.to_datetime(x.DATE, errors='coerce').values.astype('<M8[D]'))
   .....:   .groupby('CUSTOMER_name')['D']
   .....:   .min()
   .....:   .astype('datetime64[ns]')
   .....: )
Out[102]:
CUSTOMER_name
abc   2010-04-10
def   2011-01-25
fff          NaT
Name: D, dtype: datetime64[ns]

相关内容

  • 没有找到相关文章

最新更新