实际上,我想找出图像中的主色,所以我想找到图像的HSV直方图,从而过滤掉其他颜色。然而,我不知道如何做到这一点,在java平台上使用开放。我只找到c++的代码。谢谢你。
Mat image = Highgui.imread("binary07.jpg");
//Mat src = new Mat(image.height(), image.width(), CvType.CV_8UC2);
Imgproc.cvtColor(image, image, Imgproc.COLOR_RGB2GRAY);
List<Mat> hsv_planes = new ArrayList<Mat>();
Core.split(image, hsv_planes);
MatOfInt histSize = new MatOfInt(256);
final MatOfFloat histRange = new MatOfFloat(0f, 256f);
boolean accumulate = false;
Mat h_hist = new Mat();
Mat s_hist = new Mat();
Mat v_hist = new Mat();
//error appear in the following sentences
Imgproc.calcHist((List<Mat>) hsv_planes.get(0), new MatOfInt(3), new Mat(), h_hist, histSize, histRange, accumulate);
Imgproc.calcHist((List<Mat>) hsv_planes.get(1), new MatOfInt(3), new Mat(), s_hist, histSize, histRange, accumulate);
Imgproc.calcHist((List<Mat>) hsv_planes.get(2), new MatOfInt(3), new Mat(), v_hist, histSize, histRange, accumulate);
int hist_w = 512;
int hist_h = 600;
long bin_w = Math.round((double) hist_w / 256);
//bin_w = Math.round((double) (hist_w / 256));
Mat histImage = new Mat(hist_h, hist_w, CvType.CV_8UC1);
Core.normalize(h_hist, h_hist, 3, histImage.rows(), Core.NORM_MINMAX);
Core.normalize(s_hist, s_hist, 3, histImage.rows(), Core.NORM_MINMAX);
Core.normalize(v_hist, v_hist, 3, histImage.rows(), Core.NORM_MINMAX);
for (int i = 1; i < 256; i++) {
Point p1 = new Point(bin_w * (i - 1), hist_h - Math.round(h_hist.get(i - 1, 0)[0]));
Point p2 = new Point(bin_w * (i), hist_h - Math.round(h_hist.get(i, 0)[0]));
Core.line(histImage, p1, p2, new Scalar(255, 0, 0), 2, 8, 0);
Point p3 = new Point(bin_w * (i - 1), hist_h - Math.round(s_hist.get(i - 1, 0)[0]));
Point p4 = new Point(bin_w * (i), hist_h - Math.round(s_hist.get(i, 0)[0]));
Core.line(histImage, p3, p4, new Scalar(0, 255, 0), 2, 8, 0);
Point p5 = new Point(bin_w * (i - 1), hist_h - Math.round(v_hist.get(i - 1, 0)[0]));
Point p6 = new Point(bin_w * (i), hist_h - Math.round(v_hist.get(i, 0)[0]));
Core.line(histImage, p5, p6, new Scalar(0, 0, 255), 2, 8, 0);
}
Highgui.imwrite("histogram.jpg", histImage);
我不知道如何得到分割函数后的输出
参考:http://docs.opencv.org/java/http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html
在代码中,颜色转换:
Imgproc.cvtColor(image, image, Imgproc.COLOR_RGB2GRAY);
应该是HSV不灰色:
Imgproc.cvtColor(image, image, Imgproc.COLOR_BGR2HSV);
在您的示例中,您将只有一个(灰色)平面而不是3个HSV通道。当你访问第2和第3个平面时,会出现错误。
这是OpenCV 2.4.11 Java (Android)下比较源图像和参考图像直方图的代码。
// Assume SourceImage is a Bitmap ARGB_8888
BitmapFactory.Options options = new BitmapFactory.Options();
options.inPreferredConfig = Bitmap.Config.ARGB_8888;
Bitmap refImage = BitmapFactory.decodeFile(mBaseDir + "some_reference.jpg", options);
Mat hsvRef = new Mat();
Mat hsvSource = new Mat();
Mat srcRef = new Mat(refImage.getHeight(), refImage.getWidth(), CvType.CV_8U, new Scalar(4));
Utils.bitmapToMat(refImage, srcRef);
Mat srcSource = new Mat(SourceImage.getHeight(), SourceImage.getWidth(), CvType.CV_8U, new Scalar(4));
Utils.bitmapToMat(SourceImage, srcSource);
/// Convert to HSV
Imgproc.cvtColor(srcRef, hsvRef, Imgproc.COLOR_BGR2HSV);
Imgproc.cvtColor(srcSource, hsvSource, Imgproc.COLOR_BGR2HSV);
/// Using 50 bins for hue and 60 for saturation
int hBins = 50;
int sBins = 60;
MatOfInt histSize = new MatOfInt( hBins, sBins);
// hue varies from 0 to 179, saturation from 0 to 255
MatOfFloat ranges = new MatOfFloat( 0f,180f,0f,256f );
// we compute the histogram from the 0-th and 1-st channels
MatOfInt channels = new MatOfInt(0, 1);
Mat histRef = new Mat();
Mat histSource = new Mat();
ArrayList<Mat> histImages=new ArrayList<Mat>();
histImages.add(hsvRef);
Imgproc.calcHist(histImages,
channels,
new Mat(),
histRef,
histSize,
ranges,
false);
Core.normalize(histRef,
histRef,
0,
1,
Core.NORM_MINMAX,
-1,
new Mat());
histImages=new ArrayList<Mat>();
histImages.add(hsvSource);
Imgproc.calcHist(histImages,
channels,
new Mat(),
histSource,
histSize,
ranges,
false);
Core.normalize(histSource,
histSource,
0,
1,
Core.NORM_MINMAX,
-1,
new Mat());
double resp1 = Imgproc.compareHist(histRef, histSource, 0);
double resp2 = Imgproc.compareHist(histRef, histSource, 1);
double resp3 = Imgproc.compareHist(histRef, histSource, 2);
double resp4 = Imgproc.compareHist(histRef, histSource, 3);
下面的代码对一个深度通道工作得很好。您只需要做一些修改来添加其他两个通道
//Calculate histogram
java.util.List<Mat> matList = new LinkedList<Mat>();
matList.add(imageIR_gray);
Mat histogram = new Mat();
MatOfFloat ranges=new MatOfFloat(0,256);
MatOfInt histSize = new MatOfInt(255);
Imgproc.calcHist(
matList,
new MatOfInt(0),
new Mat(),
histogram ,
histSize ,
ranges);
// Create space for histogram image
Mat histImage = Mat.zeros( 100, (int)histSize.get(0, 0)[0], CvType.CV_8UC1);
// Normalize histogram
Core.normalize(histogram, histogram, 1, histImage.rows() , Core.NORM_MINMAX, -1, new Mat() );
// Draw lines for histogram points
for( int i = 0; i < (int)histSize.get(0, 0)[0]; i++ )
{
Core.line(
histImage,
new org.opencv.core.Point( i, histImage.rows() ),
new org.opencv.core.Point( i, histImage.rows()-Math.round( histogram.get(i,0)[0] )) ,
new Scalar( 255, 255, 255),
1, 8, 0 );
}