#include <iostream>
#include <limits>
int MIN = std::numeric_limits<int>::min()
using namespace std ;
void findMaxSubArray(int inputArray[] , int n )
{
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = MIN ;
int cumulativeSum= 0;
int maxStartIndexUntilNow=0;
for (int currentIndex = 0; currentIndex < n ; currentIndex++)
{
int eachArrayItem = inputArray[currentIndex];
cumulativeSum+=eachArrayItem;
if(cumulativeSum>maxSum)
{
maxSum = cumulativeSum;
maxStartIndex=maxStartIndexUntilNow;
maxEndIndex = currentIndex;
}
else if (cumulativeSum<0)
{
maxStartIndexUntilNow=currentIndex+1;
cumulativeSum=0;
}
}
cout << "Max sum : "<< maxSum << "n" ;
cout << "Max start index : "<< maxStartIndex << "n" ;
cout << "Max end index : "<< maxEndIndex << "n" ;
}
int main()
{
int intArr[] = {-1,3,-1,-1,-1,-1,-1,-1 } ;
//int intArr[] = {-1, 3, -5, 4, 6, -1, 2, -7, 13, -3};
//int intArr[]={-6,-2,-3,-4,-1,-5,-5};
findMaxSubArray(intArr,8);
return 0 ;
}
我对这里给出的实现是否正确持怀疑态度,所以我完全在C++中实现了它,对于上面的测试用例,它不起作用。我找不出算法哪里错了?
Takeint maxSum = -1;
将解决您的问题。此外,您的上述程序也不可编译。这适用于integer
数字
#include <iostream>
#include <limits>
using namespace std ;
int MIN = std::numeric_limits<int>::min();
void findMaxSubArray(int inputArray[] , int n )
{
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = -1 ;
int cumulativeSum= 0;
int maxStartIndexUntilNow=0;
for (int currentIndex = 0; currentIndex < n ; currentIndex++)
{
int eachArrayItem = inputArray[currentIndex];
cumulativeSum+=eachArrayItem;
if(cumulativeSum>maxSum)
{
maxSum = cumulativeSum;
maxStartIndex=maxStartIndexUntilNow;
maxEndIndex = currentIndex;
}
else if (cumulativeSum<0)
{
maxStartIndexUntilNow=currentIndex+1;
cumulativeSum=0;
}
}
cout<< "Max sum : "<< maxSum << "n" ;
cout<< "Max start index : "<< maxStartIndex << "n" ;
cout<< "Max end index : "<< maxEndIndex << "n" ;
}
int main()
{
int intArr[] = {-1,3,-1,-1,-1,-1,-1,-1 } ;
//int intArr[] = {-1, 3, -5, 4, 6, -1, 2, -7, 13, -3};
//int intArr[]={-6,-2,-3,-4,-1,-5,-5};
findMaxSubArray(intArr,8);
return 0 ;
}
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = MIN;
这是你的问题。你在骗算法。在索引0处开始和结束的子数组的和为arr[0]
,而不是负无穷大。但这也不是一个好的起点。
int maxStartIndex=0;
int maxEndIndex=-1;
int maxSum = 0;
任何数组都有一个零和子数组:一个空的。你需要打败那个,而不是任何负和。
总的来说,有很多好的资源。这里有一个链接,指向一个您应该在C++中查找的有用资源。您还可以查看此资源,它是下面代码的来源,并且具有C实现。以下是粗略算法的伪代码:
Initialize:
max_so_far = 0
max_ending_here = 0
Loop for each element of the array
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_ending_here < 0)
max_ending_here = 0
(c) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
return max_so_far
下面是一个用C:实现算法的简单程序
#include<stdio.h>
int maxSubArraySum(int a[], int size)
{
int max_so_far = 0, max_ending_here = 0;
int i;
for(i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if(max_ending_here < 0)
max_ending_here = 0;
if(max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
return max_so_far;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = sizeof(a)/sizeof(a[0]);
int max_sum = maxSubArraySum(a, n);
printf("Maximum contiguous sum is %dn", max_sum);
getchar();
return 0;
}
正如人们所指出的,这种方法并不适用于所有的负数。如果所有数字都为负数,它只返回0。因此,我们可以进一步优化问题。以下是一些很好地优化了原始方法的示例代码:
int maxSubArraySum(int a[], int size)
{
int max_so_far = 0, max_ending_here = 0;
int i;
for(i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if(max_ending_here < 0)
max_ending_here = 0;
/* Do not compare for all elements. Compare only
when max_ending_here > 0 */
else if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
return max_so_far;
}
您的代码的问题是,您在(CucumulativeSum>maxSum(之前检查了这个(Cucument<0(,因为您的maxSum是MIN,所以如果第一个数字是负数,第二个数字是正数,那么它将失败,因为cumulativeSum>maxSum,所以-1将被添加到累积总和中,因此答案将是2而不是3。因此,在之前检查(cumulativeSum<0(,或者使maxSum=-1,或者在(accumulativeSum>maxSum&&cumulativeSum>0(中添加条件