Neo4j 密码查询相似度计算性能缓慢



我对Neo4j/Graph数据库非常陌生,并试图从Cypher食谱中复制教程:http://docs.neo4j.org/chunked/stable/cypher-cookbook-similarity-calc.html

随机数据集包含100种食物

和1500个人,所有的人都通过ATE关系与食物相关的"倍"整数属性。食物和人被标记并具有属性"名称" - 通过自动索引索引

neo4j-sh (?)$ dbinfo -g "Primitive count"
{
  "NumberOfNodeIdsInUse": 1600,
  "NumberOfPropertyIdsInUse": 151600,
  "NumberOfRelationshipIdsInUse": 150000,
  "NumberOfRelationshipTypeIdsInUse": 1
}
neo4j-sh (?)$ index --indexes
Node indexes:
  node_auto_index
Relationship indexes:
  relationship_auto_index

在 neo4j-shell 中从说明书运行修改后的查询永远不会完成(可能是因为节点/关系太多?

EXPORT name="Florida Goyette"
MATCH (me:Person { name: {name}})-[r1:ATE]->(food)<-[r2:ATE]-(you:Person)
WITH me,count(DISTINCT r1) AS H1,count(DISTINCT r2) AS H2,you
MATCH (me)-[r1:ATE]->(food)<-[r2:ATE]-(you)
RETURN SUM((1-ABS(r1.times/H1-r2.times/H2))*(r1.times+r2.times)/(H1+H2)) AS similarity
LIMIT 100;

所以我开始研究如何更早地将"前"100 人限制下来,并得出了这个:

EXPORT name="Florida Goyette"
MATCH (me:Person { name: {name} })-[r1:ATE]->(food)
WITH me, food
MATCH (food)<-[r2:ATE]-(you)
WHERE me <> you
WITH me, you
LIMIT 100
MATCH (me)-[r1:ATE]->(food)<-[r2:ATE]-(you)
WITH me, count(DISTINCT r1) AS H1, count(DISTINCT r2) AS H2, you
MATCH (me)-[r1:ATE]->(food)<-[r2:ATE]-(you)
WITH me, you, SUM((1-ABS(r1.times/H1-r2.times/H2))*(r1.times+r2.times)/(H1+H2)) AS similarity
RETURN me.name, you.name, similarity
ORDER BY similarity DESC;

但是此查询在预热缓存上执行非常差

100 rows
16038 ms

有没有机会使这样的查询执行得更快,以便"实时"使用?

系统和 Neo4j

Windows 7(64位),Intel Core I7-2600K,8GB RAM,SSD驱动器上的Neo4j数据库。

Neo4j社区版:2.1.0-M01(也在2.0.1稳定版上测试)

neo4j-community.options

 -Xmx2048m
 -Xms2048m

neo4j.properties

neostore.nodestore.db.mapped_memory=200M
neostore.relationshipstore.db.mapped_memory=200M
neostore.propertystore.db.mapped_memory=200M
neostore.propertystore.db.strings.mapped_memory=330M
neostore.propertystore.db.arrays.mapped_memory=330M
node_auto_indexing=true
node_keys_indexable=name
relationship_auto_indexing=true
relationship_keys_indexable=times

我的数据的密码转储(503kb压缩)

配置文件输出

ColumnFilter(symKeys=["similarity", "you", "you.name", "me", "me.name"], returnItemNames=["me.name", "you.name", "similarity"], _rows=100, _db_hits=0)
Sort(descr=["SortItem(similarity,false)"], _rows=100, _db_hits=0)
  Extract(symKeys=["me", "you", "similarity"], exprKeys=["me.name", "you.name"], _rows=100, _db_hits=200)
    ColumnFilter(symKeys=["me", "you", "  INTERNAL_AGGREGATEcb085cf5-8982-4a83-ba3d-9642de570c59"], returnItemNames=["me", "you", "similarity"], _rows=100, _db_hits=0)
      EagerAggregation(keys=["me", "you"], aggregates=["(INTERNAL_AGGREGATEcb085cf5-8982-4a83-ba3d-9642de570c59,Sum(Divide(Multiply(Subtract(Literal(1),AbsFunction(Subtract(Divide(Property(r1,times(1)),H1),Divide(Property(r2,times(1)),H2)))),Add(Property(r1,times(1)),Property(r2,times(1)))),Add(H1,H2))))"], _rows=100, _db_hits=40000)
        SimplePatternMatcher(g="(you)-['r2']-(food),(me)-['r1']-(food)", _rows=10000, _db_hits=0)
          ColumnFilter(symKeys=["me", "you", "  INTERNAL_AGGREGATE677cd11c-ae53-4d7b-8df6-732ffed28bbf", "  INTERNAL_AGGREGATEb5eb877c-de01-4e7a-9596-03cd94cfa47a"], returnItemNames=["me", "H1", "H2", "you"], _rows=100, _db_hits=0)
            EagerAggregation(keys=["me", "you"], aggregates=["(  INTERNAL_AGGREGATE677cd11c-ae53-4d7b-8df6-732ffed28bbf,Distinct(Count(r1),r1))", "(  INTERNAL_AGGREGATEb5eb877c-de01-4e7a-9596-03cd94cfa47a,Distinct(Count(r2),r2))"], _rows=100, _db_hits=0)
              SimplePatternMatcher(g="(you)-['r2']-(food),(me)-['r1']-(food)", _rows=10000, _db_hits=0)
                ColumnFilter(symKeys=["me", "food", "you", "r2"], returnItemNames=["me", "you"], _rows=100, _db_hits=0)
                  Slice(limit="Literal(100)", _rows=100, _db_hits=0)
                    Filter(pred="NOT(me == you)", _rows=100, _db_hits=0)
                      SimplePatternMatcher(g="(you)-['r2']-(food)", _rows=100, _db_hits=0)
                        ColumnFilter(symKeys=["food", "me", "r1"], returnItemNames=["me", "food"], _rows=1, _db_hits=0)
                          Filter(pred="Property(me,name(0)) == {name}", _rows=1,_db_hits=148901)
                            TraversalMatcher(start={"label": "Person", "producer": "NodeByLabel", "identifiers": ["me"]}, trail="(me)-[r1:ATE WHERE true AND true]->(food)", _rows=148901, _db_hits=148901)

您正在多次执行相同的匹配。这样效果更好吗?

EXPORT name="Florida Goyette"
MATCH (me:Person { name: {name}})-[r1:ATE]->(food)<-[r2:ATE]-(you:Person)
WITH me,r1,r2,count(DISTINCT r1) AS H1,count(DISTINCT r2) AS H2,you
LIMIT 100 
RETURN SUM((1-ABS(r1.times/H1-r2.times/H2))*(r1.times+r2.times)/(H1+H2)) AS similarity;

您使用了错误的索引类型。使用 创建标签索引

CREATE INDEX ON :Person(name)

使用 检查架构索引和约束

新4J-外壳

schema
schema ls -l :User 

neo4j-浏览器

:schema 
:schema ls -l :User

可能需要对查询进行优化,但请从此处开始。

  1. 在窗口内存映射位于堆。因此,请将堆大小增加到 4G。

  2. 您不需要旧的自动索引,而是像jjaderberg所说的那样的新模式索引。

  3. 这将返回多少行?

.

MATCH (me:Person { name: {name}})-[r1:ATE]->(food)<-[r2:ATE]-(you:Person) RETURN count(*)

以及有多少:

MATCH (me:Person { name: {name}})-[r1:ATE]->(food)<-[r2:ATE]-(you:Person)
WITH me,count(DISTINCT r1) AS H1,count(DISTINCT r2) AS H2,you
MATCH (me)-[r1:ATE]->(food)<-[r2:ATE]-(you)
RETURN COUNT(*)

您还可以避免匹配两次:

MATCH (me:Person { name: {name}})-[r1:ATE]->(food)<-[r2:ATE]-(you:Person)
WITH me,
     collect([r1,r2]) as rels, 
     count(DISTINCT r1) AS H1,
     count(DISTINCT r2) AS H2,
     you
RETURN me,you, 
       reduce(a=0,r in rels | 
              a + (1-ABS(r[0].times/H1-r[1].times/H2))*
                  (r[0].times+r[1].times)
                  /(H1+H2) as similarity

顺便说一句,如果你用你的域、用例和一些示例数据创建一个 GraphGist,那就太棒了!

最新更新