我实现了一个基于Maged M.Michael和Michael L.Scott作品《简单、快速和实用的非阻塞和阻塞》中指定的算法的无锁队列并发队列算法(对于算法,请跳到第4页(
我在shared_ptr
上使用了原子操作,如std::atomic_load_explicit
等。
当只在一个线程中使用队列时,一切都很好,但当从不同线程使用它时,我会得到堆栈溢出异常。
不幸的是,我找不到问题的根源。似乎当一个shared_ptr
超出范围时,它会减少下一个ConcurrentQueueNode
上的引用数量,并导致无限递归,但我不明白为什么。。
代码:
队列节点:
template<class T>
struct ConcurrentQueueNode {
T m_Data;
std::shared_ptr<ConcurrentQueueNode> m_Next;
template<class ... Args>
ConcurrentQueueNode(Args&& ... args) :
m_Data(std::forward<Args>(args)...) {}
std::shared_ptr<ConcurrentQueueNode>& getNext() {
return m_Next;
}
T getValue() {
return std::move(m_Data);
}
};
并发队列(注意:不适合胆小的人(:
template<class T>
class ConcurrentQueue {
std::shared_ptr<ConcurrentQueueNode<T>> m_Head, m_Tail;
public:
ConcurrentQueue(){
m_Head = m_Tail = std::make_shared<ConcurrentQueueNode<T>>();
}
template<class ... Args>
void push(Args&& ... args) {
auto node = std::make_shared<ConcurrentQueueNode<T>>(std::forward<Args>(args)...);
std::shared_ptr<ConcurrentQueueNode<T>> tail;
for (;;) {
tail = std::atomic_load_explicit(&m_Tail, std::memory_order_acquire);
std::shared_ptr<ConcurrentQueueNode<T>> next =
std::atomic_load_explicit(&tail->getNext(),std::memory_order_acquire);
if (tail == std::atomic_load_explicit(&m_Tail, std::memory_order_acquire)) {
if (next.get() == nullptr) {
auto currentNext = std::atomic_load_explicit(&m_Tail, std::memory_order_acquire)->getNext();
auto res = std::atomic_compare_exchange_weak(&tail->getNext(), &next, node);
if (res) {
break;
}
}
else {
std::atomic_compare_exchange_weak(&m_Tail, &tail, next);
}
}
}
std::atomic_compare_exchange_strong(&m_Tail, &tail, node);
}
bool tryPop(T& dest) {
std::shared_ptr<ConcurrentQueueNode<T>> head;
for (;;) {
head = std::atomic_load_explicit(&m_Head, std::memory_order_acquire);
auto tail = std::atomic_load_explicit(&m_Tail,std::memory_order_acquire);
auto next = std::atomic_load_explicit(&head->getNext(), std::memory_order_acquire);
if (head == std::atomic_load_explicit(&m_Head, std::memory_order_acquire)) {
if (head.get() == tail.get()) {
if (next.get() == nullptr) {
return false;
}
std::atomic_compare_exchange_weak(&m_Tail, &tail, next);
}
else {
dest = next->getValue();
auto res = std::atomic_compare_exchange_weak(&m_Head, &head, next);
if (res) {
break;
}
}
}
}
return true;
}
};
再现问题的示例用法:
int main(){
ConcurrentQueue<int> queue;
std::thread threads[4];
for (auto& thread : threads) {
thread = std::thread([&queue] {
for (auto i = 0; i < 100'000; i++) {
queue.push(i);
int y;
queue.tryPop(y);
}
});
}
for (auto& thread : threads) {
thread.join();
}
return 0;
}
问题在于竞争条件,它可能导致队列中的每个节点都在等待一次释放,这是递归的,会破坏堆栈。
如果您将测试更改为只使用一个线程但不弹出,则每次都会出现相同的堆栈溢出错误。
for (auto i = 1; i < 100000; i++) {
queue.push(i);
//int y;
//queue.tryPop(y);
}
你需要取消草书删除节点链:
__forceinline ~ConcurrentQueueNode() {
if (!m_Next || m_Next.use_count() > 1)
return;
KillChainOfDeath();
}
void KillChainOfDeath() {
auto pThis = this;
std::shared_ptr<ConcurrentQueueNode> Next, Prev;
while (1) {
if (pThis->m_Next.use_count() > 1)
break;
Next.swap(pThis->m_Next); // unwire node
Prev = NULL; // free previous node that we unwired in previous loop
if (!(pThis = Next.get())) // move to next node
break;
Prev.swap(Next); // else Next.swap will free before unwire.
}
}
我以前从未使用过shared_ptr,所以我不知道是否有更快的方法。此外,由于我以前从未使用过shared_ptr,我不知道你的算法是否会遇到ABA问题。除非shared_ptr实现中有特殊的东西来阻止ABA,否则我担心以前释放的节点可能会被重用,从而欺骗CAS。不过,当我运行您的代码时,我似乎从未遇到过这个问题。