Java 中的离散小波变换会在图像中创建白点



在我的Java程序中,图像被加载到程序中,然后使用离散小波变换进行转换,所得系数用作输出图像的图片数据。

该过程适用于自然图像:https://i.stack.imgur.com/q7qVp.jpg

但是,如果我变换例如一个卡顿图像,则近似子带的暗边上会出现白点:https://i.stack.imgur.com/aRtIR.jpg

以下是转发DWT的代码:

private int[][] transformPixels(int[][] pixels, int widthHeight) {
    double[][] temp_bank = new double[widthHeight][widthHeight];
    double a1 = -1.586134342;
    double a2 = -0.05298011854;
    double a3 = 0.8829110762;
    double a4 = 0.4435068522;
    // Scale coeff:
    double k1 = 0.81289306611596146; // 1/1.230174104914
    double k2 = 0.61508705245700002;// 1.230174104914/2
    for (int i = 0; i < 2; i++) {
        for (int col = 0; col < widthHeight; col++) {
            // Predict 1
            for (int row = 1; row < widthHeight - 1; row += 2) {
                pixels[row][col] += a1 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[widthHeight - 1][col] += 2 * a1 * pixels[widthHeight - 2][col];
            // Update 1
            for (int row = 2; row < widthHeight; row += 2) {
                pixels[row][col] += a2 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[0][col] += 2 * a2 * pixels[1][col];
            // Predict 2
            for (int row = 1; row < widthHeight - 1; row += 2) {
                pixels[row][col] += a3 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[widthHeight - 1][col] += 2 * a3 * pixels[widthHeight - 2][col];
            // Update 2
            for (int row = 2; row < widthHeight; row += 2) {
                pixels[row][col] += a4 * (pixels[row - 1][col] + pixels[row + 1][col]);
            }
            pixels[0][col] += 2 * a4 * pixels[1][col];
        }
        for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                if (row % 2 == 0)
                    temp_bank[col][row / 2] = k1 * pixels[row][col];
                else
                    temp_bank[col][row / 2 + widthHeight / 2] = k2 * pixels[row][col];
            }
        }
        for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                pixels[row][col] = (int) temp_bank[row][col];
            }
        }
    }
    return pixels;
}

这是使用提升方案实施的CDF9/7钳工银行的DWT,类似于JPEG2000中的DWT。

该算法有两个限制:

  1. 只能处理灰度数据
  2. 图片的宽度和高度必须相同,并且是 2^n 的乘积,例如 256x256、512x512 等。
因为灰度值

也可能计算错误,所以下面是加载图像、开始转换、将 rgb 值转换为灰度并转换回 rgb 的其他代码:

public BufferedImage openImage() throws InvalidWidthHeightException {
    try {
        int returnVal = fc.showOpenDialog(panel);
        if (returnVal == JFileChooser.APPROVE_OPTION) {
            File file = fc.getSelectedFile();
            BufferedImage temp = ImageIO.read(file);
            if (temp == null)
                return null;
            int checkInt = temp.getWidth();
            boolean check = (checkInt & (checkInt - 1)) == 0;
            if (checkInt != temp.getHeight() & !check)
                throw new InvalidWidthHeightException();
            int widthandHeight = temp.getWidth();
            image = new BufferedImage(widthandHeight, widthandHeight, BufferedImage.TYPE_BYTE_GRAY);
            Graphics g = image.getGraphics();
            g.drawImage(temp, 0, 0, null);
            g.dispose();
            return image;
        }
    } catch (IOException e) {
        System.out.println("Failed to load image!");
    }
    return null;
}
public void transform(int count) {
    int[][] pixels = getGrayValues(image);
    int transformedPixels[][];
    int width = pixels.length;
    transformedPixels = transformPixels(pixels, width);
    width/=2;
    for (int i = 1; i < count + 1; i++) {
        transformedPixels = transformPixels(transformedPixels, width);
        width/=2;
    }
    width = pixels.length;
    transformedImage = new BufferedImage(width, width, BufferedImage.TYPE_BYTE_GRAY);
    for (int x = 0; x < width; x++) {
        for (int y = 0; y < width; y++) {
            transformedImage.setRGB(x, y, tranformToRGB(transformedPixels[x][y]));
        }
    }
}
private int tranformToRGB(double d) {
    int value = (int) d;
    if (d < 0)
        d = 0;
    if (d > 255)
        d = 255;
    return 0xffffffff << 24 | value << 16 | value << 8 | value;
}
private int[][] getGrayValues(BufferedImage image2) {
    int[][] res = new int[image.getHeight()][image.getWidth()];
    int r, g, b;
    for (int i = 0; i < image.getWidth(); i++) {
        for (int j = 0; j < image.getHeight(); j++) {
            int value = image2.getRGB(i, j);
            r = (value >> 16) & 0xFF;
            g = (value >> 8) & 0xFF;
            b = (value & 0xFF);
            res[i][j] = (r + g + b) / 3;
        }
    }
    return res;
}

注意:由于图像的宽度和高度预期相同,因此我有时也只使用宽度表示高度。

编辑:按照@stuhlo的建议,我在前向DWT中添加了近似子带值的检查:

for (int row = 0; row < widthHeight; row++) {
            for (int col = 0; col < widthHeight; col++) {
                if (row % 2 == 0) {
                    double value = k1 * pixels[row][col];
                    if (value > 255)
                        value = 255;
                    if (value < 0)
                        value = 0;
                    temp_bank[col][row / 2] = value;
                } else {
                    temp_bank[col][row / 2 + widthHeight / 2] = k2 * pixels[row][col];
                }
            }
        }

不幸的是,现在水平细节的子部变成了黑色。

您的问题是由子带样本比原始图像样本需要更多的位来存储的事实引起的。

我建议使用更大的数据类型来存储子带的样本,并将它们规范化回 8 位值以进行显示。

相关内容

  • 没有找到相关文章

最新更新