为什么f <$> g <$> x
等同于(f . g) <$> x
,尽管<$>
不是右关联?
(这种等价在通俗$
成语中是有效的,但目前$
是右联想的!
<*>
具有与<$>
相同的关联性和优先级,但行为不同!
例:
Prelude Control.Applicative> (show . show) <$> Just 3
Just ""3""
Prelude Control.Applicative> show <$> show <$> Just 3
Just ""3""
Prelude Control.Applicative> pure show <*> pure show <*> Just 3
<interactive>:12:6:
Couldn't match type `[Char]' with `a0 -> b0'
Expected type: (a1 -> String) -> a0 -> b0
Actual type: (a1 -> String) -> String
In the first argument of `pure', namely `show'
In the first argument of `(<*>)', namely `pure show'
In the first argument of `(<*>)', namely `pure show <*> pure show'
Prelude Control.Applicative>
Prelude Control.Applicative> :i (<$>)
(<$>) :: Functor f => (a -> b) -> f a -> f b
-- Defined in `Data.Functor'
infixl 4 <$>
Prelude Control.Applicative> :i (<*>)
class Functor f => Applicative f where
...
(<*>) :: f (a -> b) -> f a -> f b
...
-- Defined in `Control.Applicative'
infixl 4 <*>
Prelude Control.Applicative>
从<$>
的定义来看,我希望show <$> show <$> Just 3
也会失败。
为什么
f <$> g <$> x
等同于(f . g) <$> x
?
这与其说是函子的东西,不如说是哈斯克尔的东西。它起作用的原因是函数是函子。两个<$>
运算符都在不同的函子中工作!
f <$> g
实际上与f . g
相同,因此您询问的等价性比f <$> (g <$> x) ≡ f . g <$> x
要琐碎得多。