我正在尝试运行一个类似于谷歌PageRank算法的函数(当然是出于非商业目的)。以下是Python代码;注意,a[0]
是这里唯一重要的东西,而a[0]
包含n x n
矩阵,例如[[0,1,1],[1,0,1],[1,1,0]]
。此外,你可以在维基百科上找到我的代码来源:
def GetNodeRanks(a): # graph, names, size
numIterations = 10
adjacencyMatrix = copy.deepcopy(a[0])
b = [1]*len(adjacencyMatrix)
tmp = [0]*len(adjacencyMatrix)
for i in range(numIterations):
for j in range(len(adjacencyMatrix)):
tmp[j] = 0
for k in range(len(adjacencyMatrix)):
tmp[j] = tmp[j] + adjacencyMatrix[j][k] * b[k]
norm_sq = 0
for j in range(len(adjacencyMatrix)):
norm_sq = norm_sq + tmp[j]*tmp[j]
norm = math.sqrt(norm_sq)
for j in range(len(b)):
b[j] = tmp[j] / norm
print b
return b
当我运行这个实现(在比3 x 3
矩阵大得多的矩阵上,n.b.)时,它没有产生足够的精度来计算秩,从而使我能够有效地比较它们。所以我尝试了这个:
from decimal import *
getcontext().prec = 5
def GetNodeRanks(a): # graph, names, size
numIterations = 10
adjacencyMatrix = copy.deepcopy(a[0])
b = [Decimal(1)]*len(adjacencyMatrix)
tmp = [Decimal(0)]*len(adjacencyMatrix)
for i in range(numIterations):
for j in range(len(adjacencyMatrix)):
tmp[j] = Decimal(0)
for k in range(len(adjacencyMatrix)):
tmp[j] = Decimal(tmp[j] + adjacencyMatrix[j][k] * b[k])
norm_sq = Decimal(0)
for j in range(len(adjacencyMatrix)):
norm_sq = Decimal(norm_sq + tmp[j]*tmp[j])
norm = Decimal(norm_sq).sqrt
for j in range(len(b)):
b[j] = Decimal(tmp[j] / norm)
print b
return b
即使在这种毫无帮助的低精度下,代码也非常慢,在我坐着等待它运行的时间里从未完成运行。以前,代码很快,但不够精确。
有没有一种合理/简单的方法可以让代码同时快速准确地运行?
加速的几个技巧:
- 优化循环内部的代码
- 如果可能的话,把所有的东西都移出内环
- 不要重新计算,已知的,使用变量
- 不要做不必要的事情,跳过它们
- 考虑使用列表理解,它通常会快一点
- 一旦达到可接受的速度就停止优化
浏览您的代码:
from decimal import *
getcontext().prec = 5
def GetNodeRanks(a): # graph, names, size
# opt: pass in directly a[0], you do not use the rest
numIterations = 10
adjacencyMatrix = copy.deepcopy(a[0])
#opt: why copy.deepcopy? You do not modify adjacencyMatric
b = [Decimal(1)]*len(adjacencyMatrix)
# opt: You often call Decimal(1) and Decimal(0), it takes some time
# do it only once like
# dec_zero = Decimal(0)
# dec_one = Decimal(1)
# prepare also other, repeatedly used data structures
# len_adjacencyMatrix = len(adjacencyMatrix)
# adjacencyMatrix_range = range(len_ajdacencyMatrix)
# Replace code with pre-calculated variables yourself
tmp = [Decimal(0)]*len(adjacencyMatrix)
for i in range(numIterations):
for j in range(len(adjacencyMatrix)):
tmp[j] = Decimal(0)
for k in range(len(adjacencyMatrix)):
tmp[j] = Decimal(tmp[j] + adjacencyMatrix[j][k] * b[k])
norm_sq = Decimal(0)
for j in range(len(adjacencyMatrix)):
norm_sq = Decimal(norm_sq + tmp[j]*tmp[j])
norm = Decimal(norm_sq).sqrt #is this correct? I woudl expect .sqrt()
for j in range(len(b)):
b[j] = Decimal(tmp[j] / norm)
print b
return b
现在,关于如何在Python中优化列表处理的示例不多了。
使用sum
,更改:
norm_sq = Decimal(0)
for j in range(len(adjacencyMatrix)):
norm_sq = Decimal(norm_sq + tmp[j]*tmp[j])
至:
norm_sq = sum(val*val for val in tmp)
列表理解:
更改:
for j in range(len(b)):
b[j] = Decimal(tmp[j] / norm)
更改为:
b = [Decimal(tmp_itm / norm) for tmp_itm in tmp]
如果你采用这种编码风格,你也可以优化初始循环,并且可能会发现,一些预先计算的变量正在变得过时。