复杂的行和列操作熊猫



>我正在尝试同时执行行和列操作。我有一个时间序列的数据。我确实检查了这里和文档中几乎所有的例子,但没有太多运气,并且比以前更困惑。

我有两个文件都在同一个路径中

Path = '/'
File_1.csv 
Nos,00:00:00,12:00:00
123,5245,624
125,4534,65
567,642,7522

File_2.csv
Nos,00:00:00
123,20
123,20
123,20
125,50
125,50
567,500
567,500
567,500
567,500
567,500

预期输出是在执行以下操作时将file_1.csvcol[last]计数合并为新列file_2.csv

  1. Nos=123的值,它在file_2.csv中出现3次,因此除以相应的值,即 624/3 = 208 .

  2. 现在,通过将同一行中00:00:00的值添加到对应于新列中的Nos的值来放置这个新值,该新列的标题为来自file_1.csvcol[last],即 208+20=228

现在,追加的file_2.csv如下所示:

File_2.csv
    Nos,00:00:00,12:00:00
    123,20,228
    123,20,228
    123,20,228
    125,50,82/83 #float to be rounded off
    125,50,82/83
    567,500,2004 #float rounded off
    567,500,2004
    567,500,2004
    567,500,2004
    567,500,2004

从哪里开始理解这看起来非常复杂。任何继续编写代码的建议都将是巨大的帮助。提前谢谢。

两个数据帧合并为一个:

In [34]: df3 = pd.merge(df2, df1[['Nos', '12:00:00']], on=['Nos'], how='left')
In [35]: df3
Out[35]: 
   Nos  00:00:00  12:00:00
0  123        20       624
1  123        20       624
2  123        20       624
3  125        50        65
4  125        50        65
5  567       500      7522
6  567       500      7522
7  567       500      7522
8  567       500      7522
9  567       500      7522

然后,您可以执行groupby/transform来计算每个组中有多少项目:

count = df3.groupby(['Nos'])['12:00:00'].transform('count')

然后,您希望计算的值可以表示为

df3['12:00:00'] = df3['00:00:00'] + df3['12:00:00']/count 

例如

import pandas as pd
df1 = pd.read_csv('File_1.csv')
df2 = pd.read_csv('File_2.csv')
last1, last2 = df1.columns[-1], df2.columns[-1]
df3 = pd.merge(df2, df1[['Nos', last1]], on=['Nos'], how='left')
count = df3.groupby(['Nos'])[last1].transform('count')
df3[last1] = df3[last2] + df3[last1]/count 
print(df3)

收益 率

   Nos  00:00:00  12:00:00
0  123        20     228.0
1  123        20     228.0
2  123        20     228.0
3  125        50      82.5
4  125        50      82.5
5  567       500    2004.4
6  567       500    2004.4
7  567       500    2004.4
8  567       500    2004.4
9  567       500    2004.4

或者,您可以使用

df3[last1] = df3.groupby(['Nos']).apply(lambda x: x[last2] + x[last1]/len(x) ).values

而不是

count = df3.groupby(['Nos'])[last1].transform('count')
df3[last1] = df3[last2] + df3[last1]/count 

但是,它更慢,因为groupby/apply对每个组进行一次加法和除法,而

df3[last1] = df3[last2] + df3[last1]/count 

正在对整列执行加法和除法。如果有很多组,则性能差异可能很大。将两个数据帧合并为一个:

In [34]: df3 = pd.merge(df2, df1[['Nos', '12:00:00']], on=['Nos'], how='left')
In [35]: df3
Out[35]: 
   Nos  00:00:00  12:00:00
0  123        20       624
1  123        20       624
2  123        20       624
3  125        50        65
4  125        50        65
5  567       500      7522
6  567       500      7522
7  567       500      7522
8  567       500      7522
9  567       500      7522

然后,您可以执行groupby/transform来计算每个组中有多少项目:

count = df3.groupby(['Nos'])['12:00:00'].transform('count')

然后,您希望计算的值可以表示为

df3['12:00:00'] = df3['00:00:00'] + df3['12:00:00']/count 

例如

import pandas as pd
df1 = pd.read_csv('File_1.csv')
df2 = pd.read_csv('File_2.csv')
last1, last2 = df1.columns[-1], df2.columns[-1]
df3 = pd.merge(df2, df1[['Nos', last1]], on=['Nos'], how='left')
count = df3.groupby(['Nos'])[last1].transform('count')
df3[last1] = df3[last2] + df3[last1]/count 
print(df3)

收益 率

   Nos  00:00:00  12:00:00
0  123        20     228.0
1  123        20     228.0
2  123        20     228.0
3  125        50      82.5
4  125        50      82.5
5  567       500    2004.4
6  567       500    2004.4
7  567       500    2004.4
8  567       500    2004.4
9  567       500    2004.4

或者,您可以使用

df3[last1] = df3.groupby(['Nos']).apply(lambda x: x[last2] + x[last1]/len(x) ).values

而不是

count = df3.groupby(['Nos'])[last1].transform('count')
df3[last1] = df3[last2] + df3[last1]/count 

但是,它更慢,因为groupby/apply对每个组进行一次加法和除法,而

df3[last1] = df3[last2] + df3[last1]/count 

正在对整列执行加法和除法。如果有很多组,则性能差异可能很大:

In [52]: df3 = pd.concat([df3]*1000)
In [56]: df3['Nos'] = np.random.randint(1000, size=len(df3))
In [57]: %timeit using_transform(df3)
100 loops, best of 3: 6.49 ms per loop
In [58]: %timeit using_apply(df3)
1 loops, best of 3: 270 ms per loop

相关内容

  • 没有找到相关文章

最新更新