我正在尝试同时在一个程序中执行多个操作。我有一个数据框,其中有Dates
我不知道开始和结束,我想找到:
- 数据集的总天数
- 总小时数
- 计数的中位数
- 为每天/日期的中位数编写单独的输出。
- 如果可能的话,以最可能简单的方式进行中位数。
输入:GB 大小的大文件中的几行
2004-01-05,16:00:00,17:00:00,Mon,10766,656
2004-01-05,17:00:00,18:00:00,Mon,12223,670
2004-01-05,18:00:00,19:00:00,Mon,12646,710
2004-01-05,19:00:00,20:00:00,Mon,19269,778
2004-01-05,20:00:00,21:00:00,Mon,20504,792
2004-01-05,21:00:00,22:00:00,Mon,16553,783
2004-01-05,22:00:00,23:00:00,Mon,18944,790
2004-01-05,23:00:00,00:00:00,Mon,17534,750
2004-01-06,00:00:00,01:00:00,Tue,17262,747
2004-01-06,01:00:00,02:00:00,Tue,19072,777
2004-01-06,02:00:00,03:00:00,Tue,18275,785
2004-01-06,03:00:00,04:00:00,Tue,13589,757
2004-01-06,04:00:00,05:00:00,Tue,16053,735
开始和结束日期未知。
编辑:预期输出:1 将只有一行结果
days,hours,median,median-of-median
2,17262,13,17398
中位数比是输出 2 中median
列的中值
预期输出:2,将具有每个日期的中位数,用于查找中位数
date,median
2004-01-05,17534
2004-01-06,17262
法典:
import pandas as pd
from datetime import datetime
df = pd.read_csv('one_hour.csv')
df.columns = ['date', 'startTime', 'endTime', 'day', 'count', 'unique']
date_count = df.count(['date'])
all_median = df.median(['count'])
all_hours = df.count(['startTime'])
med_med = df.groupby(['date','count']).median()
print date_count
print all_median
print all_hours
stats = ['date_count', 'all_median', 'all_hours', 'median-of-median']
stats.to_csv('stats_all.csv', index=False)
med_med.to_csv('med_day.csv', index=False, header=False)
显然,代码没有给出应有的结果。
错误如下所示。
错误:
Traceback (most recent call last):
File "day_median.py", line 8, in <module>
all_median = df.median(['count'])
File "/usr/local/lib/python2.7/dist-packages/pandas/core/generic.py", line 5310, in stat_func
numeric_only=numeric_only)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 4760, in _reduce
axis = self._get_axis_number(axis)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/generic.py", line 308, in _get_axis_number
axis = self._AXIS_ALIASES.get(axis, axis)
TypeError: unhashable type: 'list'
IIUC可能有助于改变:
date_count = df.count(['date'])
all_median = df.median(['count'])
all_hours = df.count(['startTime'])
自:
date_count = df['date'].count()
all_median = df['count'].median()
all_hours = df['startTime'].count()
print (date_count)
print (all_median)
print (all_hours)
13
17262.0
13
如果需要,从date
、count
和startTime
列统计。
通过评论编辑:
如果需要计数列的唯一值,请使用nunique
:
date_count = df['date'].nunique()
print (date_count)
2
数据帧stats
:
cols = ['date_count', 'all_median', 'all_hours']
stats = pd.DataFrame([[date_count, all_median, all_hours]], columns = cols)
print (stats)
date_count all_median all_hours
0 2 17262.0 13