visual studio 2010-OpenCV:使用SURF功能的彩色边框时的问题



我正在尝试使用此代码,以便可以使用彩色帧/图像来实现SURF,然后使用此处的代码Kalman_color_Object_track通过卡尔曼滤波器使用颜色值来跟踪检测到的对象。因此,这些是我打算做的步骤,但我被卡住了,因为这个SURF检测代码不接受/不适用于彩色图像:

  1. "book1.png"是彩色图像
  2. 从传入帧中检测到图像周围的矩形后,Mat结构将更改为IplImage,因为的Kalman_Color_Object_Track代码是C++

    dest_image=cvCloneImage(&(IplImage)图像);

    mat_frame=cvCloneImage(&(IplImage)帧);

  3. 调用Kalman_Color_Object_Track( mat_frame,dest_image,30);方法。

问题:(A)如何使此代码工作,以便提取和检测彩色图像的SURF特征?(B) 我不确定Kalman_Color_Object_Track()的函数签名中应该传递什么,以及(C)在对象检测模块中应该调用它的确切位置?

     #include <stdio.h>
     #include <iostream>
     #include "opencv2/core/core.hpp"
     #include "opencv2/features2d/features2d.hpp"
     #include "opencv2/highgui/highgui.hpp"
     #include "opencv2/imgproc/imgproc.hpp"
     #include "opencv2/calib3d/calib3d.hpp"
    using namespace cv;
    IplImage *mat_dest_image=0;
    IplImage *mat_frame=0;
/* Object Detection and recognition from video*/

   int main()
    {
       Mat object = imread( "book1.png", );
        if( !object.data )
        {
            std::cout<< "Error reading object " << std::endl;
            return -1;
        }
        //Detect the keypoints using SURF Detector
        int minHessian = 500;
        SurfFeatureDetector detector( minHessian );
        std::vector<KeyPoint> kp_object;
        detector.detect( object, kp_object );
        //Calculate descriptors (feature vectors)
        SurfDescriptorExtractor extractor;
        Mat des_object;
        extractor.compute( object, kp_object, des_object );
        FlannBasedMatcher matcher;

        namedWindow("Good Matches");
    namedWindow("Tracking");
        std::vector<Point2f> obj_corners(4);
        //Get the corners from the object
        obj_corners[0] = cvPoint(0,0);
        obj_corners[1] = cvPoint( object.cols, 0 );
        obj_corners[2] = cvPoint( object.cols, object.rows );
        obj_corners[3] = cvPoint( 0, object.rows );
        char key = 'a';
        int framecount = 0;
           VideoCapture cap("booksvideo.avi");
           for(; ;)
       {
           Mat frame;
            cap >> frame;
            imshow("Good Matches", frame);

            Mat des_image, img_matches;
            std::vector<KeyPoint> kp_image;
            std::vector<vector<DMatch > > matches;
            std::vector<DMatch > good_matches;
            std::vector<Point2f> obj;
            std::vector<Point2f> scene;
            std::vector<Point2f> scene_corners(4);
            Mat H;
            Mat image;
            //cvtColor(frame, image, CV_RGB2GRAY);
            detector.detect( image, kp_image );
            extractor.compute( image, kp_image, des_image );
            matcher.knnMatch(des_object, des_image, matches, 2);
            for(int i = 0; i < min(des_image.rows-1,(int) matches.size()); i++) //THIS  LOOP IS SENSITIVE TO SEGFAULTS
            {
                if((matches[i][0].distance < 0.6*(matches[i][1].distance)) && ((int) matches[i].size()<=2 && (int) matches[i].size()>0))
                {
                    good_matches.push_back(matches[i][0]);
                }
            }
            //Draw only "good" matches
            drawMatches( object, kp_object, image, kp_image, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
            if (good_matches.size() >= 4)
            {
                for( int i = 0; i < good_matches.size(); i++ )
                {
                    //Get the keypoints from the good matches
                    obj.push_back( kp_object[ good_matches[i].queryIdx ].pt );
                    scene.push_back( kp_image[ good_matches[i].trainIdx ].pt );
                }
                H = findHomography( obj, scene, CV_RANSAC );
                perspectiveTransform( obj_corners, scene_corners, H);
                //Draw lines between the corners (the mapped object in the scene image )
                line( img_matches, scene_corners[0] + Point2f( object.cols, 0), scene_corners[1] + Point2f( object.cols, 0), Scalar(0, 255, 0), 4 );
                line( img_matches, scene_corners[1] + Point2f( object.cols, 0), scene_corners[2] + Point2f( object.cols, 0), Scalar( 0, 255, 0), 4 );
                line( img_matches, scene_corners[2] + Point2f( object.cols, 0), scene_corners[3] + Point2f( object.cols, 0), Scalar( 0, 255, 0), 4 );
                line( img_matches, scene_corners[3] + Point2f( object.cols, 0), scene_corners[0] + Point2f( object.cols, 0), Scalar( 0, 255, 0), 4 );
    mat_dest_image=cvCloneImage(&(IplImage)image);
    mat_frame=cvCloneImage(&(IplImage)frame);
    Kalman_Color_Object_Track( ); // The tracking method
            }
            //Show detected matches
            imshow( "Good Matches", img_matches );
            for( int i = 0; i < good_matches.size(); i++ )
    { printf( "-- Good Match [%d] Keypoint 1: %d  -- Keypoint 2: %d  n", i,    good_matches[i].queryIdx, good_matches[i].trainIdx ); }
            waitKey(0);
       }
        return 0;
    }

本文通过独立计算每个通道的梯度直方图来实现彩色图像上的SIFT描述符。也许您可以对SURF功能尝试同样的方法。

相关内容

  • 没有找到相关文章

最新更新