动态编程矩阵链乘法



我在读动态编程中的矩阵链乘法,它有一个简单的递归解决方案,它具有指数运行时间。

http://www.geeksforgeeks.org/dynamic-programming-set-8-matrix-chain-multiplication/

尽管有动态程序。解决方案(上面链接中的代码)的运行时复杂度为O(n^3),但如果我们保留一个2d数组来存储重叠子问题的结果,它的运行时是否与dp解决方案相同?

public class MatrixChain {
    public static void main(String... args) throws IOException {
        new MatrixChain().job();
    }
    private void job() {
        int arr[] = new int[]{40, 20, 30, 10, 30};
        int[][] dp = new int[5][5];
        for (int[] x : dp)
            Arrays.fill(x, -1);
        int min = findMin(arr, 1, arr.length - 1, dp);
        System.out.println(min);
    }
    private int findMin(int[] arr, int i, int j, int dp[][]) {
        if (i == j) return 0;
        int min = Integer.MAX_VALUE;
        for (int k = i; k < j; k++) {
            int fp;
            if (dp[i][k] == -1)
                dp[i][k] = fp = findMin(arr, i, k, dp);
            else fp = dp[i][k];
            int lp;
            if (dp[k + 1][j] == -1)
                dp[k + 1][j] = lp = findMin(arr, k + 1, j, dp);
            else
                lp = dp[k + 1][j];
            int sum = fp + lp + arr[i - 1] * arr[k] * arr[j];
            if (sum < min)
                min = sum;
        }
        return min;
    }
}

谢谢!

是的,它会有。编写函数是迭代的还是递归的并不重要。重要的是,你要记住你的结果。你确实这么做了。

尽管我有一些优化:

private int findMin(int[] arr, int i, int j, int dp[][]) {
    if (i == j) 
        return 0;
    /* Immediate look-up in dp */
    if (dp[i][j] != -1)
        return dp[i][j];
    /* Otherwise compute the number, much shorter since you don't
       have to worry about reading from dp and saving it to dp. */
    int min = Integer.MAX_VALUE;
    for (int k = i; k < j; k++) {
        int fp = findMin(arr, i, k, dp);
        int lp = findMin(arr, k + 1, j, dp);
        int sum = fp + lp + arr[i - 1] * arr[k] * arr[j];
        if (sum < min)
            min = sum;
    }
    /* Now save the result */
    dp[i][j] = min;
    return min;
}

相关内容

  • 没有找到相关文章

最新更新