为决策树中的每个数据点找到相应的叶节点(scikit-learn)



我正在使用python 3.4中的scikit-learn包中的决策树分类器,并且我想为每个输入数据点获得相应的叶节点id。

例如,我的输入可能像这样:

array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2]])

,假设对应的叶节点分别为16、5和45。我希望我的输出是:

leaf_node_id = array([16, 5, 45])

我已经阅读了scikit-learn邮件列表和SF的相关问题,但我仍然不能使它工作。这是我在邮件列表中找到的一些提示,但仍然不起作用。

http://sourceforge.net/p/scikit-learn/mailman/message/31728624/

在一天结束时,我只想有一个函数GetLeafNode(clf, x_validate),这样它的输出是相应叶节点的列表。下面是再现我收到的错误的代码。所以,任何建议都将是非常感谢的。

from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the error message below:
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)
_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()
ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'

自scikit-learn 0.17以来,您可以使用DecisionTree对象的apply方法来获取数据点在树中结束的叶子的索引。基于neobot的回答:

from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Compute the leaf node id for each of my training data points
clf.apply(X_train)

产生输出

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2])

我终于让它工作了。以下是一个基于我在scikit-learn邮件列表中的通信信息的解决方案:

在scikit-learn 0.16.1版本之后,在clf.tree_中实现了apply方法,因此,我遵循了以下步骤:

  1. 将scikit-learn更新到最新版本(0.16.1),以便您可以从clf.tree_
  2. 使用apply方法
  3. 使用X_train = X_train.astype('float32')
  4. 将输入数据数组(X_train, X_valida)从float64转换为float32
  5. 现在你可以这样使用apply方法:clf.tree_.apply(X_train),你会得到每个数据点的叶子节点id。
下面是最后的代码:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# convert data to float32
X_train = X_train.astype('float32')
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the leaf node id:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2])

相关内容

  • 没有找到相关文章

最新更新