VHDL中可合成的多维数组



我需要在我的设计中使用多维数组来表示矩阵。我已经尝试了两个可用的选项:

  1. 声明数组的数组

    type t11 is array (0 to c1_r2) of std_logic_vector(31 downto 0);
    type t1 is array (0 to r1) of t11; --r1*c1_r2 matrix
    
  2. 多维数组。

    type matrix  is array (natural range <>, natural range <>)
                   of std_logic_vector(31 downto 0);
    

然而,在这两种情况下,我在xilinx的合成后模拟给了我错误"切片名称只允许在单维数组上"。什么是在可合成的vhdl设计中使用多维数组的正确方法?欢迎提供任何意见。

我正在使用Xilinx ISE附带的XST合成器。我同时索引I和j,因为我的矩阵维数是m * n * 32。

My net a_in in in the entity

    a_in: in  matrix (0 to size - 1, 0 to size - 1);

被修改为

    a_in : in STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 );

在我的程序中,我在两个生成k和m的语句中访问矩阵中的值:

    add_instx: add 
            port map (
                a => a_in(k,m),
                b => b_in(k,m),
                clk => clk,
                sclr => clr,
                ce => start,
                result => temp_out(k,m),
                rdy => add_over(k,m)
            );

a_in的测试台架输入为

    a_in <= (("00111111100000000000000000000000", "00000000000000000000000000000000"),("00000000000000000000000000000000", "00111111100000000000000000000000"));

我的合成生成了类型为:Xst:387的警告-附加到网络的KEEP属性可能会阻碍时间优化。删除此属性可以获得更好的结果。然而,我没有设置任何保持属性,我不知道在哪里寻找这个属性。请帮助!非常感谢。

我很抱歉没有添加完整的代码。请找到下面的代码和包。

    library IEEE;
    use IEEE.STD_LOGIC_1164.ALL;
    use IEEE.NUMERIC_STD.ALL;
    use work.mat_pak.all;

    entity newproj is
        generic ( size:  natural := 2 );
        port ( 
            clk:                in  std_logic;
            clr:                in  std_logic;
            start:              in  std_logic;
            a_in:               in  matrix (0 to size - 1, 0 to size - 1);
            b_in:               in  matrix (0 to size - 1, 0 to size - 1);
            aplusb:             out matrix (0 to size - 1, 0 to size - 1);
            parallel_add_done:  out std_logic);
    end newproj;
    architecture Behavioral of newproj is
    COMPONENT add --This is a 32 bit floating point add IP core
      PORT (
        a : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
        b : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
        clk : IN STD_LOGIC;
         sclr : IN STD_LOGIC;
         ce : IN STD_LOGIC;
        result : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
         rdy: OUT STD_LOGIC
      );
    END COMPONENT;
        signal temp_out: matrix (0 to size - 1, 0 to size - 1) :=  (others => (others => (others => '0')));  
        signal add_over: bmatrix (0 to size - 1, 0 to size - 1) := (others => (others => '0'));  
    begin
        g0: 
            for k in  0 to mat_dim generate 
            g0x: 
                for m in 0 to mat_dim generate
                add_instx: add 
                    port map (
                        a => a_in(k,m),
                        b => b_in(k,m),
                        clk => clk,
                        sclr => clr,
                        ce => start,
                        result => temp_out(k,m),
                        rdy => add_over(k,m)
                    );
            end generate;   
        end generate;
        aplusb <= temp_out;
         p1_add:
        process (add_over)
            variable check_all_done: std_logic;
        begin
            check_all_done := '1';
            for k in 0 to mat_dim loop
                for m in 0 to mat_dim loop
                    check_all_done := check_all_done and add_over(k)(m);
                end loop;
            end loop;
            parallel_add_done <= check_all_done;
        end process;
    end Behavioral;

这里使用的包是:

    library IEEE;
    use IEEE.STD_LOGIC_1164.all;
    use IEEE.NUMERIC_STD.ALL;

    package mat_pak is
        CONSTANT mat_dim : natural := 2;
        type matrix  is array (natural range <>, natural range <>)
                   of std_logic_vector(31 downto 0);
        type bmatrix is array (natural range <>, natural range <>) 
                   of std_logic;                      

    end mat_pak;

合成后仿真模型文件自行修改实体的排序和数据类型。实体如下所示:

    library IEEE;
    use IEEE.STD_LOGIC_1164.ALL;
    library UNISIM;
    use UNISIM.VCOMPONENTS.ALL;
    use UNISIM.VPKG.ALL;
    entity newproj is
      port (
        clk : in STD_LOGIC := 'X'; 
        clr : in STD_LOGIC := 'X'; 
        start : in STD_LOGIC := 'X'; 
        parallel_add_done : out STD_LOGIC; 
        a_in : in STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 ); 
        b_in : in STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 ); 
        aplusb : out STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 ) 
      );
    end newproj;

你的第一个数组不是一个多维数组,它是一个2次嵌套的一维数组。

你的例子:

type t11 is array (0 to c1_r2) of std_logic_vector(31 downto 0);
type t1 is array (0 to r1) of t11;

这个定义更清楚:

subtype t_dim1 is std_logic_vector(31 downto 0);
type t_dim1_vector is array(natural range <>) of t_dim1;
subtype t_dim2 is t_dim1_vector(0 to c1_r2);
type t_dim3_vector is array(natural range <>) of t_dim2;
subtype t_dim3 is t_dim3_vector(0 to r1);

您可以通过索引每个维度来访问该结构:

signal matrix3 : t_dim3;
signal matrix2 : t_dim2;
signal matrix1 : t_dim1;
signal slv : std_logic_vector(31 downto 0);
signal sl : std_logic;
matrix2 <= matrix3(i);
matrix1 <= matrix2(j);
matrix1 <= matrix3(i)(j);
slv <= matrix3(i)(j);
sl <= matrix3(i)(j)(k);

你也可以切片每个维度:

signal matrix3 : t_dim3;
signal slice3 : t_dim3_vector(0 to 3);
signal slice2 : t_dim2_vector(0 to 3);
signal slv : std_logic_vector(7 downto 0);
slice3 <= matrix3(4 to 7);
slice2 <= matrix3(i)(2 to 5);
slice2 <= slice3(i)(2 to 5);
slv <= matrix3(i)(j)(15 downto 8);

第二个例子:

type matrix is array (natural range <>, natural range <>) of std_logic_vector(31 downto 0);

这是一个嵌套一维数组的二维数组。该结构可以通过以下方式访问:

signal mat : matrix(0 to r1, p to c1_r2);
signal slv : std_logic_vector(31 downto 0);
signal sl : std_logic;
slv <= mat(i, j);
sl <= mat(i, j)(k);

由于VHDL-2008切片也允许在多维数组。在VHDL-2008之前,你必须为这项工作使用函数。

看看我的PoC。

查看如何处理一维和多维数组。

同时,Xilinx在其[Vivado合成用户指南(UG901)]中添加了一些信息(撰写本文时Xilinx网站离线)

例如:

-- 3-D Ram Inference Example (Single port)
-- Compile this file in VHDL2008 mode
-- File:rams_sp_3d.vhd
library ieee;
use ieee.std_logic_1164.all;
package mypack is
    type myarray_t is array(integer range<>) of std_logic_vector;
    type mem_t is array(integer range<>) of myarray_t;
end package;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sp_3d is
    generic (
        NUM_RAMS : integer := 2;
        A_WID : integer := 10;
        D_WID : integer := 32
    );
    port (
        clk : in std_logic;
        we : in std_logic_vector(NUM_RAMS-1 downto 0);
        ena : in std_logic_vector(NUM_RAMS-1 downto 0);
        addr : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
        din : in myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0);
        dout : out myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0)
    );
end rams_sp_3d;
architecture arch of rams_sp_3d is
    signal mem : mem_t(NUM_RAMS-1 downto 0)(2**A_WID-1 downto 0)(D_WID-1 downto 0);
begin
    process(clk)
    begin
        if(clk’event and clk=’1’) then
            for i in 0 to NUM_RAMS-1 loop
                if(ena(i) = ‘1’) then
                    if(we(i) = ‘1’) then
                        mem(i)(to_integer(unsigned(addr(i)))) <= din(i);
                    end if;
                    dout(i) <= mem(i)(to_integer(unsigned(addr(i))));
                end if;
            end loop;
        end if;
    end process;
end arch;

相关内容

  • 没有找到相关文章

最新更新