我有以下代码,它不编译:
import Numeric.AD
data Trainable a b = forall n . Floating n => Trainable ([n] -> a -> b) (a -> b -> [n] -> n)
trainSgdFull :: (Floating n, Ord n) => Trainable a b -> [n] -> a -> b -> [[n]]
trainSgdFull (Trainable _ cost) init input target = gradientDescent (cost input target) init
我想使用可训练类型来表示可通过梯度下降训练的机器学习系统。第一个自变量是传递函数,第二个自变量是成本函数,a是输入类型,b是输出/目标类型,列表中包含可学习的参数。编译器抱怨:
src/MachineLearning/Training.hs:12:73:
Could not deduce (n1 ~ ad-3.3.1.1:Numeric.AD.Internal.Types.AD s n)
from the context (Floating n, Ord n)
bound by the type signature for
trainSgdFull :: (Floating n, Ord n) =>
Trainable a b -> [n] -> a -> b -> [[n]]
at src/MachineLearning/Training.hs:12:3-95
or from (Floating n1)
bound by a pattern with constructor
Trainable :: forall a b n.
Floating n =>
([n] -> a -> b) -> (a -> b -> [n] -> n) -> Trainable a b,
in an equation for `trainSgdFull'
at src/MachineLearning/Training.hs:12:17-32
or from (Numeric.AD.Internal.Classes.Mode s)
bound by a type expected by the context:
Numeric.AD.Internal.Classes.Mode s =>
[ad-3.3.1.1:Numeric.AD.Internal.Types.AD s n]
-> ad-3.3.1.1:Numeric.AD.Internal.Types.AD s n
at src/MachineLearning/Training.hs:12:56-95
`n1' is a rigid type variable bound by
a pattern with constructor
Trainable :: forall a b n.
Floating n =>
([n] -> a -> b) -> (a -> b -> [n] -> n) -> Trainable a b,
in an equation for `trainSgdFull'
at src/MachineLearning/Training.hs:12:17
Expected type: [ad-3.3.1.1:Numeric.AD.Internal.Types.AD s n1]
-> ad-3.3.1.1:Numeric.AD.Internal.Types.AD s n1
Actual type: [n] -> n
In the return type of a call of `cost'
In the first argument of `gradientDescent', namely
`(cost input target)'
基本概念正确吗?如果是,我该如何编译代码?
问题是
data Trainable a b = forall n . Floating n => Trainable ([n] -> a -> b) (a -> b -> [n] -> n)
意味着在中
Trainable transfer cost
所使用的类型CCD_ 1丢失。所有已知的是,存在具有Floating
实例的某种类型的Guessme
,使得
transfer :: [Guessme] -> a -> b
cost :: a -> b -> [Guessme] -> Guessme
您可以使用仅适用于Complex Float
、Double
或…的函数来构建Trainable
。。。
但在
trainSgdFull :: (Floating n, Ord n) => Trainable a b -> [n] -> a -> b -> [[n]]
trainSgdFull (Trainable _ cost) init input target = gradientDescent (cost input target) init
您正试图将cost
与作为参数提供的任何Floating
类型一起使用。
Trainable
是为使用类型n
0而构建的,用户提供类型n1
,这些可能相同,也可能不同。因此编译器无法推断它们是相同的。
如果你不想让n
成为Trainable
的类型参数,你需要让它包装与一起工作的多态函数,调用方提供的每个Floating
类型
data Trainable a b
= Trainable (forall n. Floating n => [n] -> a -> b)
(forall n. Floating n => a -> b -> [n] -> n)
(需要Rank2Types
,或者,由于正在被弃用,需要RankNTypes
)。