当我尝试运行svm教程时,get_support_vector_count函数不能正常工作。代码如下:
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#define NTRAINING_SAMPLES 100 // Number of training samples per class
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
using namespace cv;
using namespace std;
int main()
{
// Data for visual representation
const int WIDTH = 512, HEIGHT = 512;
Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
//--------------------- 1. Set up training data randomly ---------------------------------------
Mat trainData(2 * NTRAINING_SAMPLES, 2, CV_32FC1);
Mat labels(2 * NTRAINING_SAMPLES, 1, CV_32FC1);
RNG rng(100); // Random value generation class
// Set up the linearly separable part of the training data
int nLinearSamples = (int)(FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Generate random points for the class 2
trainClass = trainData.rowRange(2 * NTRAINING_SAMPLES - nLinearSamples, 2 * NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//------------------ Set up the non-linearly separable part of the training data ---------------
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange(nLinearSamples, 2 * NTRAINING_SAMPLES - nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//------------------------- Set up the labels for the classes ---------------------------------
labels.rowRange(0, NTRAINING_SAMPLES).setTo(1); // Class 1
labels.rowRange(NTRAINING_SAMPLES, 2 * NTRAINING_SAMPLES).setTo(2); // Class 2
//------------------------ 2. Set up the support vector machines parameters --------------------
CvSVMParams params;
params.svm_type = SVM::C_SVC;
params.C = 0.1;
params.kernel_type = SVM::LINEAR;
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
//------------------------ 3. Train the svm ----------------------------------------------------
cout << "Starting training process" << endl;
CvSVM svm;
svm.train(trainData, labels, Mat(), Mat(), params);
cout << "Finished training process" << endl;
//------------------------ 4. Show the decision regions ----------------------------------------
Vec3b green(0, 100, 0), blue(100, 0, 0);
for (int i = 0; i < I.rows; ++i)
{
for (int j = 0; j < I.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1, 2) << i, j);
float response = svm.predict(sampleMat);
if (response == 1)
I.at<Vec3b>(j, i) = green;
else if (response == 2)
I.at<Vec3b>(j, i) = blue;
}
}
//----------------------- 5. Show the training data --------------------------------------------
int thick = -1;
int lineType = 8;
float px, py;
// Class 1
for (int i = 0; i < NTRAINING_SAMPLES; ++i)
{
px = trainData.at<float>(i, 0);
py = trainData.at<float>(i, 1);
circle(I, Point((int)px, (int)py), 3, Scalar(0, 255, 0), thick, lineType);
}
// Class 2
for (int i = NTRAINING_SAMPLES; i <2 * NTRAINING_SAMPLES; ++i)
{
px = trainData.at<float>(i, 0);
py = trainData.at<float>(i, 1);
circle(I, Point((int)px, (int)py), 3, Scalar(255, 0, 0), thick, lineType);
}
//------------------------- 6. Show support vectors --------------------------------------------
thick = 2;
lineType = 8;
int x = svm.get_support_vector_count();
for (int i = 0; i < x; ++i)
{
const float* v = svm.get_support_vector(i);
circle(I, Point((int)v[0], (int)v[1]), 6, Scalar(128, 128, 128), thick, lineType);
}
imwrite("result.png", I); // save the Image
imshow("SVM for Non-Linear Training Data", I); // show it to the user
waitKey(0);
}
当我运行本教程时,svm的函数。Get_support_vector_count总是返回1。另一个是正确工作。我没有想过要怎么处理它。那么,你能给我一些建议吗?
我认为,这只是意味着你只有一个支持向量,足以在你的特征点之间画一个边界。
如果你的数据是二维的,并且是线性可分的,那么只有一个支持向量足以绘制决策边界。
可能太迟了,但是本教程使用
就可以了。params.kernel_type = CvSVM::POLY;
params.degree = 1;