我想使用我在这个网站上发现的一些代码来检测魔方:cudefinder.py.
在设法安装了所有的OpenCV库之后,当我向相机显示多维数据集时,我收到了这个错误:
Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
Traceback (most recent call last):
File "C:UsersuserDesktopcubefinder.py", line 574, in <module>
cv.Line(sg,pt[0],pt[1],(0,255,0),2)
TypeError: CvPoint argument 'pt1' expects two integers
编辑:很抱歉有那么多代码,我只是觉得这很愚蠢,没有必要。
函数cv.Line
期望点被指定为整数对,但您传递的是浮点对。在将这些点传递给cv.Line
之前,需要将它们四舍五入到最接近的整数点。也许有一个像这样的助手功能:
def grid(p):
"""Return the nearest point with integer coordinates to p."""
return int(round(p[0])), int(round(p[1]))
那么你的
cv.Line(sg,pt[0],pt[1],(0,255,0),2)
成为
cv.Line(sg,grid(pt[0]),grid(pt[1]),(0,255,0),2)
(另一种可能是首先避免生成浮点坐标。但这取决于您的应用程序是否需要额外的精度。(
以下是使其在OpenCV 2.3中工作的代码。为什么他们在函数调用cv.Line((中没有类型检查来将浮点转换为int,我无法理解
#!/usr/bin/python
import cv2.cv as cv
import sys
from random import uniform
from time import sleep
from math import sin,cos,pi,atan2,sqrt
from numpy import matrix
from time import time
from random import randrange
capture = cv.CreateCameraCapture( 0 )
cv.NamedWindow( "Fig", 1 )
frame = cv.QueryFrame( capture )
S1,S2=cv.GetSize(frame)
den=2
sg= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg2= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg3= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg4= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg5= cv.CreateImage((S1/den,S2/den), 8, 3 )
sgc= cv.CreateImage((S1/den,S2/den), 8, 3 )
hsv= cv.CreateImage((S1/den,S2/den), 8, 3 )
dst= cv.CreateImage((S1/den,S2/den), 8, 1 )
dst2= cv.CreateImage((S1/den,S2/den), 8, 1 )
d= cv.CreateImage((S1/den,S2/den), cv.IPL_DEPTH_16S, 1 )
d2=cv.CreateImage((S1/den,S2/den), 8, 1 )
d3=cv.CreateImage((S1/den,S2/den), 8, 1 )
b= cv.CreateImage((S1/den,S2/den), 8, 1 )
b4= cv.CreateImage((S1/den,S2/den), 8, 1 )
both= cv.CreateImage((S1/den,S2/den), 8, 1 )
harr= cv.CreateImage((S1/den,S2/den), 32, 1 )
W,H=S1/den,S2/den
lastdetected= 0
THR=100
dects=50 #ideal number of number of lines detections
hue= cv.CreateImage((S1/den,S2/den), 8, 1 )
sat= cv.CreateImage((S1/den,S2/den), 8, 1 )
val= cv.CreateImage((S1/den,S2/den), 8, 1 )
#stores the coordinates that make up the face. in order: p,p1,p3,p2 (i.e.) counterclockwise winding
prevface=[(0,0),(5,0),(0,5)]
dodetection=True
onlyBlackCubes=False
def grid(p):
"""Return the nearest point with integer coordinates to p."""
return int(round(p[0])), int(round(p[1]))
def intersect_seg(x1,x2,x3,x4,y1,y2,y3,y4):
den= (y4-y3)*(x2-x1)-(x4-x3)*(y2-y1)
if abs(den)<0.1: return (False, (0,0),(0,0))
ua=(x4-x3)*(y1-y3)-(y4-y3)*(x1-x3)
ub=(x2-x1)*(y1-y3)-(y2-y1)*(x1-x3)
ua=ua/den
ub=ub/den
x=x1+ua*(x2-x1)
y=y1+ua*(y2-y1)
return (True,(ua,ub),(x,y))
def ptdst(p1,p2):
return sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]))
def ptdstw(p1,p2):
#return sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]))
#test if hue is reliable measurement
if p1[1]<100 or p2[1]<100:
#hue measurement will be unreliable. Probably white stickers are present
#leave this until end
return 300.0+abs(p1[0]-p2[0])
else:
return abs(p1[0]-p2[0])
def ptdst3(p1,p2):
dist=sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2]))
if (p1[0]>245 and p1[1]>245 and p1[2]>245):
#the sticker could potentially be washed out. Lets leave it to the end
dist=dist+300.0
return dist
def compfaces(f1,f2):
totd=0
for p1 in f1:
mind=10000
for p2 in f2:
d=ptdst(p1,p2)
if d<mind:
mind=d
totd += mind
return totd/4
def avg(p1,p2):
return (0.5*p1[0]+0.5*p2[0], 0.5*p2[1]+0.5*p2[1])
def areclose(t1,t2,t):
#is t1 close to t2 within t?
return abs(t1[0]-t2[0])<t and abs(t1[1]-t2[1])<t
def winded(p1,p2,p3,p4):
#return the pts in correct order based on quadrants
avg=(0.25*(p1[0]+p2[0]+p3[0]+p4[0]),0.25*(p1[1]+p2[1]+p3[1]+p4[1]))
ps=[(atan2(p[1]-avg[1], p[0]-avg[0]), p) for p in [p1,p2,p3,p4]]
ps.sort(reverse=True)
return [p[1] for p in ps]
#return tuple of neighbors given face and sticker indeces
def neighbors(f,s):
if f==0 and s==0: return ((1,2),(4,0))
if f==0 and s==1: return ((4,3),)
if f==0 and s==2: return ((4,6),(3,0))
if f==0 and s==3: return ((1,5),)
if f==0 and s==5: return ((3,3),)
if f==0 and s==6: return ((1,8),(5,2))
if f==0 and s==7: return ((5,5),)
if f==0 and s==8: return ((3,6),(5,8))
if f==1 and s==0: return ((2,2),(4,2))
if f==1 and s==1: return ((4,1),)
if f==1 and s==2: return ((4,0),(0,0))
if f==1 and s==3: return ((2,5),)
if f==1 and s==5: return ((0,3),)
if f==1 and s==6: return ((2,8),(5,0))
if f==1 and s==7: return ((5,1),)
if f==1 and s==8: return ((0,6),(5,2))
if f==2 and s==0: return ((4,8),(3,2))
if f==2 and s==1: return ((4,5),)
if f==2 and s==2: return ((4,2),(1,0))
if f==2 and s==3: return ((3,5),)
if f==2 and s==5: return ((1,3),)
if f==2 and s==6: return ((3,8),(5,6))
if f==2 and s==7: return ((5,3),)
if f==2 and s==8: return ((1,6),(5,0))
if f==3 and s==0: return ((4,6),(0,2))
if f==3 and s==1: return ((4,7),)
if f==3 and s==2: return ((4,8),(2,0))
if f==3 and s==3: return ((0,5),)
if f==3 and s==5: return ((2,3),)
if f==3 and s==6: return ((0,8),(5,8))
if f==3 and s==7: return ((5,7),)
if f==3 and s==8: return ((2,6),(5,6))
if f==4 and s==0: return ((1,2),(0,0))
if f==4 and s==1: return ((1,1),)
if f==4 and s==2: return ((1,0),(2,2))
if f==4 and s==3: return ((0,1),)
if f==4 and s==5: return ((2,1),)
if f==4 and s==6: return ((0,2),(3,0))
if f==4 and s==7: return ((3,1),)
if f==4 and s==8: return ((3,2),(2,0))
if f==5 and s==0: return ((1,6),(2,8))
if f==5 and s==1: return ((1,7),)
if f==5 and s==2: return ((1,8),(0,6))
if f==5 and s==3: return ((2,7),)
if f==5 and s==5: return ((0,7),)
if f==5 and s==6: return ((2,6),(3,8))
if f==5 and s==7: return ((3,7),)
if f==5 and s==8: return ((3,6),(0,8))
def processColors(useRGB=True):
global assigned,didassignments
#assign all colors
bestj=0
besti=0
bestcon=0
matchesto=0
bestd=10001
taken=[0 for i in range(6)]
done=0
opposite={0:2, 1:3, 2:0, 3:1, 4:5, 5:4} #dict of opposite faces
#possibilities for each face
poss={}
for j,f in enumerate(hsvs):
for i,s in enumerate(f):
poss[j,i]=range(6)
#we are looping different arrays based on the useRGB flag
toloop=hsvs
if useRGB: toloop=colors
while done<8*6:
bestd=10000
forced=False
for j,f in enumerate(toloop):
for i,s in enumerate(f):
if i!=4 and assigned[j][i]==-1 and (not forced):
#this is a non-center sticker.
#find the closest center
considered=0
for k in poss[j,i]:
#all colors for this center were already assigned
if taken[k]<8:
#use Euclidean in RGB space or more elaborate
#distance metric for Hue Saturation
if useRGB:
dist=ptdst3(s, toloop[k][4])
else:
dist=ptdstw(s, toloop[k][4])
considered+=1
if dist<bestd:
bestd=dist
bestj=j
besti=i
matchesto=k
#IDEA: ADD PENALTY IF 2ND CLOSEST MATCH IS CLOSE TO FIRST
#i.e. we are uncertain about it
if besti==i and bestj==j: bestcon=considered
if considered==1:
#this sticker is forced! Terminate search
#for better matches
forced=True
print 'sticker',(i,j),'had color forced!'
#assign it
done=done+1
#print matchesto,bestd
assigned[bestj][besti]=matchesto
print bestcon
op= opposite[matchesto] #get the opposite side
#remove this possibility from neighboring stickers
#since we cant have red-red edges for example
#also corners have 2 neighbors. Also remove possibilities
#of edge/corners made up of opposite sides
ns=neighbors(bestj,besti)
for neighbor in ns:
p=poss[neighbor]
if matchesto in p: p.remove(matchesto)
if op in p: p.remove(op)
taken[matchesto]+=1
didassignments=True
succ=0 #number of frames in a row that we were successful in finding the outline
tracking=0
win_size=5
flags=0
detected=0
grey = cv.CreateImage ((W,H), 8, 1)
prev_grey = cv.CreateImage ((W,H), 8, 1)
pyramid = cv.CreateImage ((W,H), 8, 1)
prev_pyramid = cv.CreateImage ((W,H), 8, 1)
ff= cv.InitFont(cv.CV_FONT_HERSHEY_PLAIN, 1,1, shear=0, thickness=1, lineType=8)
counter=0 #global iteration counter
undetectednum=100
stage=1 #1: learning colors
extract=False
selected=0
colors=[[] for i in range(6)]
hsvs=[[] for i in range(6)]
assigned=[[-1 for i in range(9)] for j in range(6)]
for i in range(6):
assigned[i][4]=i
didassignments=False
#orange green red blue yellow white. Used only for visualization purposes
mycols=[(0,127,255), (20,240,20), (0,0,255), (200,0,0), (0,255,255), (255,255,255)]
while True:
frame = cv.QueryFrame( capture )
if not frame:
cv.WaitKey(0)
break
cv.Resize( frame, sg)
#cv.EqualizeHist(val, val)
#cv.Merge(hue,sat,val,None,sg2)
#cv.CvtColor(sg2,sg,cv.CV_HSV2RGB)
cv.Copy(sg, sgc)
cv.CvtColor (sg, grey, cv.CV_RGB2GRAY)
#cv.EqualizeHist(grey,grey)
#tracking mode
if tracking>0:
detected=2
#compute optical flow
features, status, track_error = cv.CalcOpticalFlowPyrLK (
prev_grey, grey, prev_pyramid, pyramid,
features,
(win_size, win_size), 3,
(cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS, 20, 0.03),
flags)
# set back the points we keep
features = [ p for (st,p) in zip(status, features) if st]
if len(features)<4:
tracking= 0 #we lost it, restart search
else:
#make sure that in addition the distances are consistent
ds1=ptdst(features[0], features[1])
ds2=ptdst(features[2], features[3])
if max(ds1,ds2)/min(ds1,ds2)>1.4: tracking=0
ds3=ptdst(features[0], features[2])
ds4=ptdst(features[1], features[3])
if max(ds3,ds4)/min(ds3,ds4)>1.4: tracking=0
if ds1< 10 or ds2<10 or ds3<10 or ds4<10: tracking=0
if tracking==0: detected=0
#detection mode
if tracking==0:
detected=0
cv.Smooth(grey,dst2,cv.CV_GAUSSIAN, 3)
cv.Laplace(dst2,d)
cv.CmpS(d,8,d2,cv.CV_CMP_GT)
if onlyBlackCubes:
#can also detect on black lines for improved robustness
cv.CmpS(grey,100,b,cv.CV_CMP_LT)
cv.And(b,d2,d2)
#these weights should be adaptive. We should always detect 100 lines
if lastdetected>dects: THR=THR+1
if lastdetected<dects: THR=max(2,THR-1)
li= cv.HoughLines2(d2, cv.CreateMemStorage(), cv.CV_HOUGH_PROBABILISTIC, 1, 3.1415926/45, THR, 10, 5)
#store angles for later
angs=[]
for (p1, p2) in li:
#cv.Line(sg,p1,p2,(0,255,0))
a = atan2(p2[1]-p1[1],p2[0]-p1[0])
if a<0:a+=pi
angs.append(a)
#lets look for lines that share a common end point
t=10
totry=[]
for i in range(len(li)):
p1,p2=li[i]
for j in range(i+1,len(li)):
q1,q2=li[j]
#test lengths are approximately consistent
dd1= sqrt((p2[0]-p1[0])*(p2[0]-p1[0])+(p2[1]-p1[1])*(p2[1]-p1[1]))
dd2= sqrt((q2[0]-q1[0])*(q2[0]-q1[0])+(q2[1]-q1[1])*(q2[1]-q1[1]))
if max(dd1,dd2)/min(dd1,dd2)>1.3: continue
matched=0
if areclose(p1,q2,t):
IT=(avg(p1,q2), p2, q1,dd1)
matched=matched+1
if areclose(p2,q2,t):
IT=(avg(p2,q2), p1, q1,dd1)
matched=matched+1
if areclose(p1,q1,t):
IT=(avg(p1,q1), p2, q2,dd1)
matched=matched+1
if areclose(p2,q1,t):
IT=(avg(p2,q1), q2, p1,dd1)
matched=matched+1
if matched==0:
#not touching at corner... try also inner grid segments hypothesis?
p1=(float(p1[0]),float(p1[1]))
p2=(float(p2[0]),float(p2[1]))
q1=(float(q1[0]),float(q1[1]))
q2=(float(q2[0]),float(q2[1]))
success,(ua,ub),(x,y)=
intersect_seg(p1[0],p2[0],q1[0],q2[0],p1[1],p2[1],q1[1],q2[1])
if success and ua>0 and ua<1 and ub>0 and ub<1:
#if they intersect
#cv.Line(sg, p1, p2, (255,255,255))
ok1=0
ok2=0
if abs(ua-1.0/3)<0.05:ok1=1
if abs(ua-2.0/3)<0.05:ok1=2
if abs(ub-1.0/3)<0.05:ok2=1
if abs(ub-2.0/3)<0.05:ok2=2
if ok1>0 and ok2>0:
#ok these are inner lines of grid
#flip if necessary
if ok1==2: p1,p2=p2,p1
if ok2==2: q1,q2=q2,q1
#both lines now go from p1->p2, q1->q2 and
#intersect at 1/3
#calculate IT
z1=(q1[0]+2.0/3*(p2[0]-p1[0]),q1[1]+2.0/3*(p2[1]-p1[1]))
z2=(p1[0]+2.0/3*(q2[0]-q1[0]),p1[1]+2.0/3*(q2[1]-q1[1]))
z=(p1[0]-1.0/3*(q2[0]-q1[0]),p1[1]-1.0/3*(q2[1]-q1[1]))
IT=(z,z1,z2,dd1)
matched=1
#only single one matched!! Could be corner
if matched==1:
#also test angle
a1 = atan2(p2[1]-p1[1],p2[0]-p1[0])
a2 = atan2(q2[1]-q1[1],q2[0]-q1[0])
if a1<0:a1+=pi
if a2<0:a2+=pi
ang=abs(abs(a2-a1)-pi/2)
if ang < 0.5:
totry.append(IT)
#cv.Circle(sg, IT[0], 5, (255,255,255))
#now check if any points in totry are consistent!
#t=4
res=[]
for i in range(len(totry)):
p,p1,p2,dd=totry[i]
a1 = atan2(p1[1]-p[1],p1[0]-p[0])
a2 = atan2(p2[1]-p[1],p2[0]-p[0])
if a1<0:a1+=pi
if a2<0:a2+=pi
dd=1.7*dd
evidence=0
totallines=0
#cv.Line(sg,p,p2,(0,255,0))
#cv.Line(sg,p,p1,(0,255,0))
#affine transform to local coords
A = matrix([[p2[0]-p[0],p1[0]-p[0],p[0]],[p2[1]-p[1],p1[1]-p[1],p[1]],[0,0,1]])
Ainv= A.I
v=matrix([[p1[0]],[p1[1]],[1]])
#check likelihood of this coordinate system. iterate all lines
#and see how many align with grid
for j in range(len(li)):
#test angle consistency with either one of the two angles
a = angs[j]
ang1=abs(abs(a-a1)-pi/2)
ang2=abs(abs(a-a2)-pi/2)
if ang1 > 0.1 and ang2>0.1: continue
#test position consistency.
q1,q2= li[j]
qwe=0.06
#test one endpoint
v=matrix([[q1[0]],[q1[1]],[1]])
vp=Ainv*v; #project it
if vp[0,0] > 1.1 or vp[0,0]<-0.1: continue
if vp[1,0] > 1.1 or vp[1,0]<-0.1: continue
if abs(vp[0,0]-1/3.0)>qwe and abs(vp[0,0]-2/3.0)>qwe and
abs(vp[1,0]-1/3.0)>qwe and abs(vp[1,0]-2/3.0)>qwe: continue
#the other end point
v=matrix([[q2[0]],[q2[1]],[1]])
vp=Ainv*v;
if vp[0,0] > 1.1 or vp[0,0]<-0.1: continue
if vp[1,0] > 1.1 or vp[1,0]<-0.1: continue
if abs(vp[0,0]-1/3.0)>qwe and abs(vp[0,0]-2/3.0)>qwe and
abs(vp[1,0]-1/3.0)>qwe and abs(vp[1,0]-2/3.0)>qwe: continue
#cv.Circle(sg, q1, 3, (255,255,0))
#cv.Circle(sg, q2, 3, (255,255,0))
#cv.Line(sg,q1,q2,(0,255,255))
evidence+=1
#print evidence
res.append((evidence, (p,p1,p2)))
minch=10000
res.sort(reverse=True)
#print [a[0] for a in res]
if len(res)>0:
minps=[]
pt=[]
#among good observations find best one that fits with last one
for i in range(len(res)):
if res[i][0]>0.05*dects:
#OK WE HAVE GRID
p,p1,p2=res[i][1]
p3= (p2[0]+p1[0]-p[0], p2[1]+p1[1]-p[1])
#cv.Line(sg,p,p1,(0,255,0),2)
#cv.Line(sg,p,p2,(0,255,0),2)
#cv.Line(sg,p2,p3,(0,255,0),2)
#cv.Line(sg,p3,p1,(0,255,0),2)
#cen=(0.5*p2[0]+0.5*p1[0],0.5*p2[1]+0.5*p1[1])
#cv.Circle(sg, cen, 20, (0,0,255),5)
#cv.Line(sg, (0,cen[1]), (320,cen[1]),(0,255,0),2)
#cv.Line(sg, (cen[0],0), (cen[0],240), (0,255,0),2)
w=[p,p1,p2,p3]
p3= (prevface[2][0]+prevface[1][0]-prevface[0][0],
prevface[2][1]+prevface[1][1]-prevface[0][1])
tc= (prevface[0],prevface[1],prevface[2],p3)
ch=compfaces(w,tc)
if ch<minch:
minch=ch
minps= (p,p1,p2)
if len(minps)>0:
prevface=minps
#print minch
if minch<10:
#good enough!
succ+=1
pt=prevface
detected=1
else:
succ=0
#we matched a few times same grid
#coincidence? I think NOT!!! Init LK tracker
if succ>2 and 1:
#initialize features for LK
pt=[]
for i in [1.0/3, 2.0/3]:
for j in [1.0/3, 2.0/3]:
pt.append((p0[0]+i*v1[0]+j*v2[0], p0[1]+i*v1[1]+j*v2[1]))
#refine points slightly
#features = cv.FindCornerSubPix (
#grey,
#pt,
#(win_size, win_size), (-1, -1),
#(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,
#20, 0.03))
features=pt
tracking=1
succ=0
else:
#we are in tracking mode, we need to fill in pt[] array
#calculate the pt array for drawing from features
#for p in features:
# cv.Circle(sg, p, 3, (255,255,255),-1)
p=features[0]
p1=features[1]
p2=features[2]
print p
print p1
print p2
v1=(p1[0]-p[0],p1[1]-p[1])
v2=(p2[0]-p[0],p2[1]-p[1])
pt=[(p[0]-v1[0]-v2[0], p[1]-v1[1]-v2[1]),
(p[0]+2*v2[0]-v1[0], p[1]+2*v2[1]-v1[1]),
(p[0]+2*v1[0]-v2[0], p[1]+2*v1[1]-v2[1])]
prevface=[pt[0],pt[1],pt[2]]
#use pt[] array to do drawing
if (detected or undetectednum<1) and dodetection:
#undetectednum 'fills in' a few detection to make
#things look smoother in case we fall out one frame
#for some reason
if not detected:
undetectednum+=1
pt=lastpt
if detected:
undetectednum=0
lastpt=pt
print pt
new_pt = []
for npt in pt:
new_pt.append((int(round(npt[0])), int(round(npt[1]))))
pt = new_pt
print pt
#~ pt = [p = (round(p[0]), round(p[1])) for p in pt]
#~ pt = [p = (round(p[0]), round(p[1])) for p in pt]
#~ for p in pt:
#~ print p
#~ return int(round(p[0])), int(round(p[1]))
#~ [p = (round(p[0]), round(p[1])) for p in pt]
#~ print "new"
#~ print p
print pt
#extract the colors
#convert to HSV
cv.CvtColor(sgc, hsv, cv.CV_RGB2HSV)
cv.Split(hsv, hue, sat, val, None)
#do the drawing. pt array should store p,p1,p2
p3= (pt[2][0]+pt[1][0]-pt[0][0], pt[2][1]+pt[1][1]-pt[0][1])
cv.Line(sg,pt[0],pt[1],(0,255,0),2)
cv.Line(sg,pt[1],p3,(0,255,0),2)
cv.Line(sg,p3,pt[2],(0,255,0),2)
cv.Line(sg,pt[2],pt[0],(0,255,0),2)
#first sort the points so that 0 is BL 1 is UL and 2 is BR
pt=winded(pt[0],pt[1],pt[2],p3)
#find the coordinates of the 9 places we want to extract over
v1=(pt[1][0]-pt[0][0], pt[1][1]-pt[0][1])
v2=(pt[3][0]-pt[0][0], pt[3][1]-pt[0][1])
p0=(pt[0][0],pt[0][1])
ep=[]
midpts=[]
i=1
j=5
for k in range(9):
ep.append((p0[0]+i*v1[0]/6.0+j*v2[0]/6.0, p0[1]+i*v1[1]/6.0+j*v2[1]/6.0))
i=i+2
if i==7:
i=1
j=j-2
rad= ptdst(v1,(0.0,0.0))/6.0
cs=[]
hsvcs=[]
den=2
for i,p in enumerate(ep):
if p[0]>rad and p[0]<W-rad and p[1]>rad and p[1]<H-rad:
#valavg=val[int(p[1]-rad/3):int(p[1]+rad/3),int(p[0]-rad/3):int(p[0]+rad/3)]
#mask=cv.CreateImage(cv.GetDims(valavg), 8, 1 )
print "p",p
p = (int(round(p[0])), int(round(p[1])))
print "p",p
print "sg",sg
rad = int(rad)
print "rad",rad
col=cv.Avg(sgc[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
col=cv.Avg(sgc[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
cv.Circle(sg, p, rad, col,-1)
if i==4:
cv.Circle(sg, p, rad, (0,255,255),2)
else:
cv.Circle(sg, p, rad, (255,255,255),2)
hueavg= cv.Avg(hue[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
satavg= cv.Avg(sat[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
cv.PutText(sg, `int(hueavg[0])`, (p[0]+70,p[1]), ff,(255,255,255))
cv.PutText(sg, `int(satavg[0])`, (p[0]+70,p[1]+10), ff,(255,255,255))
if extract:
cs.append(col)
hsvcs.append((hueavg[0],satavg[0]))
if extract:
extract= not extract
colors[selected]=cs
hsvs[selected]=hsvcs
selected=min(selected+1,5)
#draw faces of hte extracted cubes
x=20
y=20
s=13
for i in range(6):
if not colors[i]:
x+=3*s+10
continue
#draw the grid on top
cv.Rectangle(sg, (x-1,y-1), (x+3*s+5,y+3*s+5), (0,0,0),-1)
x1,y1=x,y
x2,y2=x1+s,y1+s
for j in range(9):
if didassignments:
cv.Rectangle(sg, (x1,y1), (x2,y2), mycols[assigned[i][j]],-1)
else:
cv.Rectangle(sg, (x1,y1), (x2,y2), colors[i][j],-1)
x1+=s+2
if j==2 or j==5:
x1=x
y1+=s+2
x2,y2=x1+s,y1+s
x+=3*s+10
#draw the selection rectangle
x=20
y=20
for i in range(selected):x+=3*s+10
cv.Rectangle(sg, (x-1,y-1), (x+3*s+5,y+3*s+5), (0,0,255),2)
lastdetected= len(li)
#swapping for LK
prev_grey, grey = grey, prev_grey
prev_pyramid, pyramid = pyramid, prev_pyramid
#draw img
#cv.CvtColor(sg,sg2,cv.CV_RGB2HSV)
#cv.Split(sg2, hue, sat, val, None)
#cv.Smooth(sg,sg,cv.CV_GAUSSIAN, 5)
cv.ShowImage("Fig",sg)
counter+=1 #global counter
# handle events
c = cv.WaitKey(10) % 0x100
if c == 27: break #ESC
# processing depending on the character
if 32 <= c and c < 128:
cc = chr(c).lower()
if cc== ' ':
#EXTRACT COLORS!!!
extract=True
if cc=='r':
#reset
extract=False
selected=0
colors=[[] for i in range(6)]
didassignments=False
assigned=[[-1 for i in range(9)] for j in range(6)]
for i in range(6):
assigned[i][4]=i
didassignments=False
if cc=='n':
selected=selected-1
if selected<0: selected=5
if cc=='m':
selected=selected+1
if selected>5: selected=0
if cc=='b':
onlyBlackCubes=not onlyBlackCubes
if cc=='d':
dodetection=not dodetection
if cc=='q':
print hsvs
if cc=='p':
#process!!!!
processColors()
if cc=='u':
didassignments=not didassignments
if cc=='s':
cv.SaveImage("C:\code\img\pic"+`time()`+".jpg",sgc)
cv.DestroyWindow("Fig")