我正在尝试在火花数据帧上使用SQL。但是数据框有 1 个值有字符串(这是类似 JSON 的结构):
我将数据框保存到临时表:测试表
当我做描述时:
col_name data_type
requestId string
name string
features string
但是功能值是一个 json:
{"places":11,"movies":2,"totalPlacesVisited":0,"totalSpent":13,"SpentMap":{"Movie":2,"Park Visit":11},"benefits":{"freeTime":13}}
我只想在测试表上查询总花费> 10。有人可以告诉我该怎么做吗?
我的 JSON 文件看起来像:
{
"requestId": 232323,
"name": "ravi",
"features": "{"places":11,"movies":2,"totalPlacesVisited":0,"totalSpent":13,"SpentMap":{"Movie":2,"Park Visit":11},"benefits":{"freeTime":13}}"
}
功能是一个字符串。我只需要总花费在那里。 我尝试了:
val features = StructType(
Array(StructField("totalSpent",LongType,true),
StructField("movies",LongType,true)
))
val schema = StructType(Array(
StructField("requestId",StringType,true),
StructField("name",StringType,true),
StructField("features",features,true),
)
)
val records = sqlContext.read.schema(schema).json(filePath)
由于每个请求都有一个 JSON 功能字符串。但这给了我错误。
当我尝试使用
val records = sqlContext.jsonFile(filePath)
records.printSchema
告诉我 :
root
|-- requestId: string (nullable = true)
|-- features: string (nullable = true)
|-- name: string (nullable = true)
我可以在创建架构时在结构字段中使用并行化吗?我尝试了:
I first tried with :
val customer = StructField("features",StringType,true)
val events = sc.parallelize(customer :: Nil)
val schema = StructType(Array(
StructField("requestId",StringType,true),
StructField("name", StructType(events, true),true),
StructField("features",features,true),
)
)
这也给了我错误。还尝试过:
import net.liftweb.json.parse
case class KV(k: String, v: Int)
val parseJson = udf((s: String) => {
implicit val formats = net.liftweb.json.DefaultFormats
parse(s).extract[KV]
})
val parsed = records.withColumn("parsedJSON", parseJson($"features"))
parsed.show
This gives me :
<console>:78: error: object liftweb is not a member of package net
import net.liftweb.json.parse
试:
我尝试了:
val parseJson = udf((s: String) => {
sqlContext.read.json(s)
})
val parsed = records.withColumn("parsedJSON", parseJson($"features"))
parsed.show
但又是错误。
试:
import org.json4s._
import org.json4s.jackson.JsonMethods._
val parseJson = udf((s: String) => {
parse(s)
})
val parsed = records.withColumn("parsedJSON", parseJson($"features"))
parsed.show
但它给了我:
java.lang.UnsupportedOperationException: Schema for type org.json4s.JValue is not supported
at org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:153)
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:29)
at org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:64)
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:29)
这给了我正确的模式(基于 zero323 给出的答案:
val extractFeatures = udf((features: String) => Try {
implicit val formats = DefaultFormats
parse(features).extract[Features]
}.toOption)
val parsed = records.withColumn("features", extractFeatures($"features"))
parsed.printSchema
但是当我查询时:
val value = parsed.filter($"requestId" === "232323" ).select($"features.totalSpent")
value.show gives null
.
当你从UDF返回数据时,它必须表示为SQL类型,而JSON AST不是。一种方法是创建一个类似于下面的案例类:
case class Features(
places: Integer,
movies: Integer,
totalPlacesVisited: Integer,
totalSpent: Integer,
SpentMap: Map[String, Integer],
benefits: Map[String, Integer]
)
并使用它来extract
对象:
val df = Seq((
232323, "ravi",
"""{"places":11,"movies":2,"totalPlacesVisited":0,"totalSpent":13,"SpentMap":{"Movie":2,"Park Visit":11},"benefits":{"freeTime":13}}"""
)).toDF("requestId", "name", "features")
val extractFeatures = udf((features: String) =>
parse(features).extract[Features])
val parsed = df.withColumn("features", extractFeatures($"features"))
parsed.show(false)
// +---------+----+-----------------------------------------------------------------+
// |requestId|name|features |
// +---------+----+-----------------------------------------------------------------+
// |232323 |ravi|[11,2,0,13,Map(Movie -> 2, Park Visit -> 11),Map(freeTime -> 13)]|
// +---------+----+-----------------------------------------------------------------+
parsed.printSchema
// root
// |-- requestId: integer (nullable = false)
// |-- name: string (nullable = true)
// |-- features: struct (nullable = true)
// | |-- places: integer (nullable = true)
// | |-- movies: integer (nullable = true)
// | |-- totalPlacesVisited: integer (nullable = true)
// | |-- totalSpent: integer (nullable = true)
// | |-- SpentMap: map (nullable = true)
// | | |-- key: string
// | | |-- value: integer (valueContainsNull = true)
// | |-- benefits: map (nullable = true)
// | | |-- key: string
// | | |-- value: integer (valueContainsNull = true)
根据其他记录和预期使用情况,应调整表示形式并添加相关的错误处理逻辑。
您还可以使用 DSL 以字符串形式访问单个字段:
val getMovieSpent = udf((s: String) =>
compact(render(parse(s) \ "SpentMap" \ "Movie")))
df.withColumn("movie_spent", getMovieSpent($"features").cast("bigint")).show
// +---------+----+--------------------+-----------+
// |requestId|name| features|movie_spent|
// +---------+----+--------------------+-----------+
// | 232323|ravi|{"places":11,"mov...| 2|
// +---------+----+--------------------+-----------+
有关替代方法,请参阅如何使用 Spark 数据帧查询 JSON 数据列?