求两个浮点数之比的算法



我需要找到一个浮点数与另一个浮点数的比率,该比率需要是两个整数。例如:

  • 输入:1.5, 3.25
  • 输出:"6:13"

有人知道吗?在互联网上搜索,我没有找到这样的算法,也没有找到两个浮点数(只是整数)的最小公倍数或分母的算法。

Java实现:


这是我将使用的最后一个实现:

public class RatioTest
{
  public static String getRatio(double d1, double d2)//1.5, 3.25
  {
    while(Math.max(d1,d2) < Long.MAX_VALUE && d1 != (long)d1 && d2 != (long)d2)
    {
      d1 *= 10;//15 -> 150
      d2 *= 10;//32.5 -> 325
    }
    //d1 == 150.0
    //d2 == 325.0
    try
    {
      double gcd = getGCD(d1,d2);//gcd == 25
      return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));//"6:13"
    }
    catch (StackOverflowError er)//in case getGDC (a recursively looping method) repeats too many times
    {
      throw new ArithmeticException("Irrational ratio: " + d1 + " to " + d2);
    }
  }
  public static double getGCD(double i1, double i2)//(150,325) -> (150,175) -> (150,25) -> (125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
  {
    if (i1 == i2)
      return i1;//25
    if (i1 > i2)
      return getGCD(i1 - i2, i2);//(125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
    return getGCD(i1, i2 - i1);//(150,175) -> (150,25)
  }
}
  • ->表示循环或方法调用的下一阶段

mystic的Java实现:


虽然我最后没有使用这个,但它值得被认可,所以我把它翻译成Java,这样我就能理解它了:

import java.util.Stack;
public class RatioTest
{
    class Fraction{
        long num;
        long den;
        double val;
    };
    Fraction build_fraction(Stack<long> cf){
        long term = cf.size();
        long num = cf[term - 1];
        long den = 1;
        while (term-- > 0){
            long tmp = cf[term];
            long new_num = tmp * num + den;
            long new_den = num;
            num = new_num;
            den = new_den;
        }
        Fraction f;
        f.num = num;
        f.den = den;
        f.val = (double)num / (double)den;
        return f;
    }
    void get_fraction(double x){
        System.out.println("x = " + x);
        //  Generate Continued Fraction
        System.out.print("Continued Fraction: ");
        double t = Math.abs(x);
        double old_error = x;
        Stack<long> cf;
        Fraction f;
        do{
            //  Get next term.
            long tmp = (long)t;
            cf.push(tmp);
            //  Build the current convergent
            f = build_fraction(cf);
            //  Check error
            double new_error = Math.abs(f.val - x);
            if (tmp != 0 && new_error >= old_error){
                //  New error is bigger than old error.
                //  This means that the precision limit has been reached.
                //  Pop this (useless) term and break out.
                cf.pop();
                f = build_fraction(cf);
                break;
            }
            old_error = new_error;
            System.out.print(tmp + ", ");
            //  Error is zero. Break out.
            if (new_error == 0)
                break;
            t -= tmp;
            t = 1/t;
        }while (cf.size() < 39); //  At most 39 terms are needed for double-precision.
        System.out.println();System.out.println();
        //  Print Results
        System.out.println("The fraction is:   " + f.num + " / " + f.den);
        System.out.println("Target x = " + x);
        System.out.println("Fraction = " + f.val);
        System.out.println("Relative error is: " + (Math.abs(f.val - x) / x));System.out.println();
        System.out.println();
    }
    public static void main(String[] args){
        get_fraction(15.38 / 12.3);
        get_fraction(0.3333333333333333333);    //  1 / 3
        get_fraction(0.4184397163120567376);    //  59 / 141
        get_fraction(0.8323518818409020299);    //  1513686 / 1818565
        get_fraction(3.1415926535897932385);    //  pi
    }
}

还有一点:


上面提到的实现方法可以在理论上,但是,由于浮点舍入错误,这会导致许多意想不到的异常、错误和输出。下面是一个实用的、健壮的、但有点脏的比率查找算法实现(为方便起见使用了Javadoc):

public class RatioTest
{
  /** Represents the radix point */
  public static final char RAD_POI = '.';
  /**
   * Finds the ratio of the two inputs and returns that as a <tt>String</tt>
   * <h4>Examples:</h4>
   * <ul>
   * <li><tt>getRatio(0.5, 12)</tt><ul>
     *   <li>returns "<tt>24:1</tt>"</li></ul></li>
   * <li><tt>getRatio(3, 82.0625)</tt><ul>
   *   <li>returns "<tt>1313:48</tt>"</li></ul></li>
   * </ul>
   * @param d1 the first number of the ratio
   * @param d2 the second number of the ratio
   * @return the resulting ratio, in the format "<tt>X:Y</tt>"
   */
  public static strictfp String getRatio(double d1, double d2)
  {
    while(Math.max(d1,d2) < Long.MAX_VALUE && (!Numbers.isCloseTo(d1,(long)d1) || !Numbers.isCloseTo(d2,(long)d2)))
    {
      d1 *= 10;
      d2 *= 10;
    }
    long l1=(long)d1,l2=(long)d2;
    try
    {
      l1 = (long)teaseUp(d1); l2 = (long)teaseUp(d2);
      double gcd = getGCDRec(l1,l2);
      return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
    }
    catch(StackOverflowError er)
    {
      try
      {
        double gcd = getGCDItr(l1,l2);
        return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
      }
      catch (Throwable t)
      {
        return "Irrational ratio: " + l1 + " to " + l2;
      }
    }
  }

  /**
   * <b>Recursively</b> finds the Greatest Common Denominator (GCD)
   * @param i1 the first number to be compared to find the GCD
   * @param i2 the second number to be compared to find the GCD
   * @return the greatest common denominator of these two numbers
   * @throws StackOverflowError if the method recurses to much
   */
  public static long getGCDRec(long i1, long i2)
  {
    if (i1 == i2)
      return i1;
    if (i1 > i2)
      return getGCDRec(i1 - i2, i2);
    return getGCDRec(i1, i2 - i1);
  }
  /**
   * <b>Iteratively</b> finds the Greatest Common Denominator (GCD)
   * @param i1 the first number to be compared to find the GCD
   * @param i2 the second number to be compared to find the GCD
   * @return the greatest common denominator of these two numbers
   */
  public static long getGCDItr(long i1, long i2)
  {
    for (short i=0; i < Short.MAX_VALUE &&  i1 != i2; i++)
    {
      while (i1 > i2)
        i1 = i1 - i2;
      while (i2 > i1)
        i2 = i2 - i1;
    }
      return i1;
  }
  /**
   * Calculates and returns whether <tt>d1</tt> is close to <tt>d2</tt>
   * <h4>Examples:</h4>
   * <ul>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.0001</tt>, <tt>d2 == 5</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5.0001</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.24999</tt>, <tt>d2 == 5.25</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.25</tt>, <tt>d2 == 5.24999</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5.1</tt>
   *   <ul><li>returns <tt>false</tt></li></ul></li>
   * </ul>
   * @param d1 the first number to compare for closeness
   * @param d2 the second number to compare for closeness
   * @return <tt>true</tt> if the two numbers are close, as judged by this method
   */
  public static boolean isCloseTo(double d1, double d2)
  {
    if (d1 == d2)
      return true;
    double t;
    String ds = Double.toString(d1);
    if ((t = teaseUp(d1-1)) == d2 || (t = teaseUp(d2-1)) == d1)
      return true;
    return false;
  }
  /**
   * continually increases the value of the last digit in <tt>d1</tt> until the length of the double changes
   * @param d1
   * @return
   */
  public static double teaseUp(double d1)
  {
    String s = Double.toString(d1), o = s;
    byte b;
    for (byte c=0; Double.toString(extractDouble(s)).length() >= o.length() && c < 100; c++)
      s = s.substring(0, s.length() - 1) + ((b = Byte.parseByte(Character.toString(s.charAt(s.length() - 1)))) == 9 ? 0 : b+1);
    return extractDouble(s);
  }
  /**
   * Works like Double.parseDouble, but ignores any extraneous characters. The first radix point (<tt>.</tt>) is the only one treated as such.<br/>
   * <h4>Examples:</h4>
   * <li><tt>extractDouble("123456.789")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("1qw2e3rty4uiop[5a'6.p7u8&9")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("123,456.7.8.9")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("I have $9,862.39 in the bank.")</tt> returns the double value of <tt>9862.39</tt></li>
   * @param str The <tt>String</tt> from which to extract a <tt>double</tt>.
   * @return the <tt>double</tt> that has been found within the string, if any.
   * @throws NumberFormatException if <tt>str</tt> does not contain a digit between 0 and 9, inclusive.
   */
  public static double extractDouble(String str) throws NumberFormatException
  {
    try
    {
      return Double.parseDouble(str);
    }
    finally
    {
      boolean r = true;
      String d = "";
      for (int i=0; i < str.length(); i++)
        if (Character.isDigit(str.charAt(i)) || (str.charAt(i) == RAD_POI && r))
        {
          if (str.charAt(i) == RAD_POI && r)
            r = false;
          d += str.charAt(i);
        }
      try
      {
        return Double.parseDouble(d);
      }
      catch (NumberFormatException ex)
      {
        throw new NumberFormatException("The input string could not be parsed to a double: " + str);
      }
    }
  }
}

这是一项相当重要的任务。我所知道的对任意两个浮点数给出可靠结果的最佳方法是使用连分式。

首先,将两个数相除,得到浮点比例。然后运行连分式算法,直到它终止。如果它不终止,那么它就是非理性的,并且没有解决方案。

如果它终止,将得到的连分式计算回单个分式,这将是答案。

当然,没有可靠的方法来确定是否有解决方案,因为这变成了停机问题。但是对于有限精度的浮点数,如果序列没有以合理的步数结束,则假定没有答案。

编辑2:这是我用c++编写的原始解决方案的更新。这个版本更加健壮,似乎可以处理任何正浮点数,除了INF, NAN,或者会溢出整数的极大或极小的值。

typedef unsigned long long  uint64;
struct Fraction{
    uint64 num;
    uint64 den;
    double val;
};
Fraction build_fraction(vector<uint64> &cf){
    uint64 term = cf.size();
    uint64 num = cf[--term];
    uint64 den = 1;
    while (term-- > 0){
        uint64 tmp = cf[term];
        uint64 new_num = tmp * num + den;
        uint64 new_den = num;
        num = new_num;
        den = new_den;
    }
    Fraction f;
    f.num = num;
    f.den = den;
    f.val = (double)num / den;
    return f;
}
void get_fraction(double x){
    printf("x = %0.16fn",x);
    //  Generate Continued Fraction
    cout << "Continued Fraction: ";
    double t = abs(x);
    double old_error = x;
    vector<uint64> cf;
    Fraction f;
    do{
        //  Get next term.
        uint64 tmp = (uint64)t;
        cf.push_back(tmp);
        //  Build the current convergent
        f = build_fraction(cf);
        //  Check error
        double new_error = abs(f.val - x);
        if (tmp != 0 && new_error >= old_error){
            //  New error is bigger than old error.
            //  This means that the precision limit has been reached.
            //  Pop this (useless) term and break out.
            cf.pop_back();
            f = build_fraction(cf);
            break;
        }
        old_error = new_error;
        cout << tmp << ", ";
        //  Error is zero. Break out.
        if (new_error == 0)
            break;
        t -= tmp;
        t = 1/t;
    }while (cf.size() < 39); //  At most 39 terms are needed for double-precision.
    cout << endl << endl;
    //  Print Results
    cout << "The fraction is:   " << f.num << " / " << f.den << endl;
    printf("Target x = %0.16fn",x);
    printf("Fraction = %0.16fn",f.val);
    cout << "Relative error is: " << abs(f.val - x) / x << endl << endl;
    cout << endl;
}
int main(){
    get_fraction(15.38 / 12.3);
    get_fraction(0.3333333333333333333);    //  1 / 3
    get_fraction(0.4184397163120567376);    //  59 / 141
    get_fraction(0.8323518818409020299);    //  1513686 / 1818565
    get_fraction(3.1415926535897932385);    //  pi
    system("pause");
}
输出:

x = 1.2504065040650407
Continued Fraction: 1, 3, 1, 152, 1,
The fraction is:   769 / 615
Target x = 1.2504065040650407
Fraction = 1.2504065040650407
Relative error is: 0

x = 0.3333333333333333
Continued Fraction: 0, 3,
The fraction is:   1 / 3
Target x = 0.3333333333333333
Fraction = 0.3333333333333333
Relative error is: 0

x = 0.4184397163120567
Continued Fraction: 0, 2, 2, 1, 1, 3, 3,
The fraction is:   59 / 141
Target x = 0.4184397163120567
Fraction = 0.4184397163120567
Relative error is: 0

x = 0.8323518818409020
Continued Fraction: 0, 1, 4, 1, 27, 2, 7, 1, 2, 13, 3, 5,
The fraction is:   1513686 / 1818565
Target x = 0.8323518818409020
Fraction = 0.8323518818409020
Relative error is: 0

x = 3.1415926535897931
Continued Fraction: 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3,
The fraction is:   245850922 / 78256779
Target x = 3.1415926535897931
Fraction = 3.1415926535897931
Relative error is: 0

Press any key to continue . . .

这里需要注意的是,它将pi替换为245850922 / 78256779。显然,pi是无理数。但就双精度而言,245850922 / 78256779pi没有任何不同。

基本上,任何分子/分母中有8 - 9位数字的分数都有足够的熵来覆盖几乎所有DP浮点值(除非像INF, NAN或非常大/小的值这样的极端情况)。

假设您有一个可以处理任意大数值的数据类型,您可以这样做:

  1. 将两个值都乘以10,直到有效数字完全在小数点的左边。
  2. 求两个值的最大公分母
  3. 除以GCD

对于你的例子,你可以这样写:

<>之前A = 1.5B = 3.25乘以10 15 32.5乘以10,等于150 325找到GCD: 25除以GCD: 6,13

如果浮点数有小数位数的限制-那么只需将两个数字乘以10^n,其中n是限制-所以对于2位小数,乘以100,然后计算整数-原始小数的比率将相同,因为它是一个比率

在Maxima CAS中:

(%i1) rationalize(1.5/3.5);
(%o1) 7720456504063707/18014398509481984

来自数字的代码。Lisp:

;;; This routine taken from CMUCL, which, in turn is a routine from
;;; CLISP, which is GPL.
;;;
;;; I (rtoy) have modified it from CMUCL so that it only handles bigfloats.
;;;
;;; RATIONALIZE  --  Public
;;;
;;; The algorithm here is the method described in CLISP.  Bruno Haible has
;;; graciously given permission to use this algorithm.  He says, "You can use
;;; it, if you present the following explanation of the algorithm."
;;;
;;; Algorithm (recursively presented):
;;;   If x is a rational number, return x.
;;;   If x = 0.0, return 0.
;;;   If x < 0.0, return (- (rationalize (- x))).
;;;   If x > 0.0:
;;;     Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
;;;     exponent, sign).
;;;     If m = 0 or e >= 0: return x = m*2^e.
;;;     Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
;;;     with smallest possible numerator and denominator.
;;;     Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
;;;       But in this case the result will be x itself anyway, regardless of
;;;       the choice of a. Therefore we can simply ignore this case.
;;;     Note 2: At first, we need to consider the closed interval [a,b].
;;;       but since a and b have the denominator 2^(|e|+1) whereas x itself
;;;       has a denominator <= 2^|e|, we can restrict the seach to the open
;;;       interval (a,b).
;;;     So, for given a and b (0 < a < b) we are searching a rational number
;;;     y with a <= y <= b.
;;;     Recursive algorithm fraction_between(a,b):
;;;       c := (ceiling a)
;;;       if c < b
;;;         then return c       ; because a <= c < b, c integer
;;;         else
;;;           ; a is not integer (otherwise we would have had c = a < b)
;;;           k := c-1          ; k = floor(a), k < a < b <= k+1
;;;           return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
;;;                             ; note 1 <= 1/(b-k) < 1/(a-k)
;;;
;;; You can see that we are actually computing a continued fraction expansion.
;;;
;;; Algorithm (iterative):
;;;   If x is rational, return x.
;;;   Call (integer-decode-float x). It returns a m,e,s (mantissa,
;;;     exponent, sign).
;;;   If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
;;;   Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
;;;   (positive and already in lowest terms because the denominator is a
;;;   power of two and the numerator is odd).
;;;   Start a continued fraction expansion
;;;     p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
;;;   Loop
;;;     c := (ceiling a)
;;;     if c >= b
;;;       then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
;;;            goto Loop
;;;   finally partial_quotient(c).
;;;   Here partial_quotient(c) denotes the iteration
;;;     i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
;;;   At the end, return s * (p[i]/q[i]).
;;;   This rational number is already in lowest terms because
;;;   p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
;;;
(defmethod rationalize ((x bigfloat))
  (multiple-value-bind (frac expo sign)
      (integer-decode-float x)
    (cond ((or (zerop frac) (>= expo 0))
       (if (minusp sign)
           (- (ash frac expo))
           (ash frac expo)))
      (t
       ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e),
       ;; so build the fraction up immediately, without having to do
       ;; a gcd.
       (let ((a (/ (- (* 2 frac) 1) (ash 1 (- 1 expo))))
         (b (/ (+ (* 2 frac) 1) (ash 1 (- 1 expo))))
         (p0 0)
         (q0 1)
         (p1 1)
         (q1 0))
         (do ((c (ceiling a) (ceiling a)))
         ((< c b)
          (let ((top (+ (* c p1) p0))
            (bot (+ (* c q1) q0)))
            (/ (if (minusp sign)
               (- top)
               top)
               bot)))
           (let* ((k (- c 1))
              (p2 (+ (* k p1) p0))
              (q2 (+ (* k q1) q0)))
         (psetf a (/ (- b k))
            b (/ (- a k)))
         (setf p0 p1
               q0 q1
               p1 p2
               q1 q2))))))))

我使用以下算法。它又快又简单。它使用10^N = 2^N * 5^N的事实,它还处理数字的重复模式!我希望它能对你有所帮助。

Fraction-to-ratio-converter

最新更新