火花-寻找重叠的价值观或寻找共同朋友的变体



我有一个问题,我正试图使用Spark来解决。我是Spark的新手,所以我不确定什么是最好的设计方法。

输入:

group1=user1,user2
group2=user1,user2,user3
group3=user2,user4
group4=user1,user4
group5=user3,user5
group6=user3,user4,user5
group7=user2,user4
group8=user1,user5
group9=user2,user4,user5
group10=user4,user5

我想找到每对用户之间的相互组计数。所以对于上面的输入,我期望的输出是:

输出:

1st user || 2nd user || mutual/intersection count || union count
------------------------------------------------------------
user1        user2           2                       7
user1        user3           1                       6
user1        user4           1                       9
user2        user4           3                       8

我认为有几种方法可以解决这个问题,其中一种解决方案可能是:

  • 创建一个键值对,其中key是用户,value是组
  • 按键分组,然后我们将有一个用户所属的组列表
  • 然后找到两组之间的交集/并集

示例:

(1st stage): Map
group1=user1,user2 ==>
user1, group1
user2, group1
group2=user1,user2,user3 ==>
user1, group2
user2, group2
user3, group2
....
....
....

(2nd stage): Reduce by key
user1 -> group1, group2, group4, group8
user2 -> group1, group2, group3, group7, group9

但我的问题是,在我按键减少计数后,以我想要的方式表示计数的最佳方式是什么?

有没有更好的方法来处理这个问题?最大用户数是恒定的,不会超过5000,所以这是它将创建的最大键数。但是输入可能包含接近1B行的几行。我认为那不会是个问题,如果我错了,请纠正我。

更新:

这是我用我对Spark的一点知识(上个月刚开始学习Spark)来解决这个问题的代码:

def createPair(line: String): Array[(String, String)] = {
val splits = line.split("=")
val kuid = splits(0)
splits(1).split(",").map { segment => (segment, kuid) }
}

val input = sc.textFile("input/test.log")
val pair = input.flatMap { line => createPair(line) }
val pairListDF = pair
.aggregateByKey(scala.collection.mutable.ListBuffer.empty[String])(
(kuidList, kuid) => { kuidList += kuid; kuidList },
(kuidList1, kuidList2) => { kuidList1.appendAll(kuidList2); kuidList1 })
.mapValues(_.toList).toDF().select($"_1".alias("user"), $"_2".alias("groups"))
pairListDF.registerTempTable("table")
sqlContext.udf.register("intersectCount", (list1: WrappedArray[String], list2: WrappedArray[String]) => list1.intersect(list2).size)
sqlContext.udf.register("unionCount", (list1: WrappedArray[String], list2: WrappedArray[String]) => list1.union(list2).distinct.size)
val populationDF = sqlContext.sql("SELECT t1.user AS user_first,"
+ "t2.user AS user_second,"
+ "intersectCount(t1.groups, t2.groups) AS intersect_count,"
+ "unionCount(t1.groups, t2.groups) AS union_count"
+ " FROM table t1 INNER JOIN table t2"
+ " ON t1.user < t2.user"
+ " ORDER BY user_first,user_second")

输出:

+----------+-----------+---------------+-----------+
|user_first|user_second|intersect_count|union_count|
+----------+-----------+---------------+-----------+
|     user1|      user2|              2|          7|
|     user1|      user3|              1|          6|
|     user1|      user4|              1|          9|
|     user1|      user5|              1|          8|
|     user2|      user3|              1|          7|
|     user2|      user4|              3|          8|
|     user2|      user5|              1|          9|
|     user3|      user4|              1|          8|
|     user3|      user5|              2|          6|
|     user4|      user5|              3|          8|
+----------+-----------+---------------+-----------+

我很想得到一些关于我的代码和我缺少的东西的反馈。请随意批评我的代码,因为我刚刚开始学习Spark。再次感谢@aaxiom的回答,比我预期的要小得多,也要好得多。

摘要:

获取配对计数,然后使用

并集(a,b)=计数(a)+计数(b)-交集(a,b)

val data = sc.textFile("test")
//optionally data.cache(), depending on size of data.
val pairCounts  = data.flatMap(pairs).reduceByKey(_ + _)
val singleCounts = data.flatMap(singles).reduceByKey(_ + _)
val singleCountMap = sc.broadcast(singleCounts.collectAsMap())
val result = pairCounts.map{case ((user1, user2), intersectionCount) =>(user1, user2, intersectionCount, singleCountMap.value(user1) + singleCountMap.value(user2) - intersectionCount)}


详细信息:

  1. 总共有5000个用户,2500万个密钥(每对1个)应该不会太多。我们可以使用reduceByKey来计算交叉点计数。

  2. 在地图中,单个计数可以很容易地成为Broadcasted

  3. 现在众所周知的是:

    Union(user1, user2) = count(user1) + count(user2) - Intersection(user1, user2)

前两个计数是从广播的映射中读取的,而我们在对计数的rdd上进行映射。

代码:

//generate ((user1, user2), 1) for pair counts
def pairs(str: String) = {
val users = str.split("=")(1).split(",")
val n = users.length
for(i <- 0 until n; j <- i + 1 until n) yield {
val pair = if(users(i) < users(j)) {
(users(i), users(j))
} else {
(users(j), users(i))
} //order of the user in a list shouldn't matter
(pair, 1)
} 
}
//generate (user, 1), to obtain single counts
def singles(str: String) = {
for(user <- str.split("=")(1).split(",")) yield (user, 1)
}

//read the rdd
scala> val data = sc.textFile("test")
scala> data.collect.map(println)
group1=user1,user2
group2=user1,user2,user3
group3=user2,user4
group4=user1,user4
group5=user3,user5
group6=user3,user4,user5
group7=user2,user4
group8=user1,user5
group9=user2,user4,user5
group10=user4,user5
//get the pair counts
scala> val pairCounts  = data.flatMap(pairs).reduceByKey(_ + _)
pairCounts: org.apache.spark.rdd.RDD[((String, String), Int)] = ShuffledRDD[16] at reduceByKey at <console>:25

//just checking
scala> pairCounts.collect.map(println)
((user2,user3),1)
((user1,user3),1)
((user3,user4),1)
((user2,user5),1)
((user1,user5),1)
((user2,user4),3)
((user4,user5),3)
((user1,user4),1)
((user3,user5),2)
((user1,user2),2)
//single counts
scala> val singleCounts = data.flatMap(singles).reduceByKey(_ + _)
singleCounts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[20] at reduceByKey at <console>:25
scala> singleCounts.collect.map(println)
(user5,5)
(user3,3)
(user1,4)
(user2,5)
(user4,6)

//broadcast single counts
scala> val singleCountMap = sc.broadcast(singleCounts.collectAsMap())
//calculate the results:

最后:

scala> val res = pairCounts.map{case ((user1, user2), intersectionCount) => (user1, user2, intersectionCount, singleCountMap.value(user1) + singleCountMap.value(user2) - intersectionCount)}
res: org.apache.spark.rdd.RDD[(String, String, Int, Int)] = MapPartitionsRDD[23] at map at <console>:33
scala> res.collect.map(println)
(user2,user3,1,7)
(user1,user3,1,6)
(user3,user4,1,8)
(user2,user5,1,9)
(user1,user5,1,8)
(user2,user4,3,8)
(user4,user5,3,8)
(user1,user4,1,9)
(user3,user5,2,6)
(user1,user2,2,7)

注:

  1. 在生成对时,我对元组进行排序,因为我们不希望用户在列表中的顺序很重要。

  2. 将用户名字符串编码为整数,您可能会获得显著的性能提升。

相关内容

  • 没有找到相关文章

最新更新