Scikitlearn - 拟合顺序和预测输入,这重要吗?



这个库刚刚入门...在使用随机森林分类器时遇到一些问题(我已经阅读了文档但没有弄清楚)

的问题很简单,假设我有一个火车数据集,例如

阿 乙 C

1 2 3

其中 A 是自变量 (y),B-C 是因变量 (x)。 假设测试集看起来相同,但顺序为

乙 甲

1 2 3

当我打电话给forest.fit(train_data[0:,1:],train_data[0:,0])然后,我是否需要在运行之前重新排序测试集以匹配此顺序?(忽略我需要删除已经预测的 y 值 (a) 的事实,所以让我们说 B 和 C 是乱序的......

是的,您需要对它们重新排序。想象一个更简单的情况,线性回归。该算法将计算每个特征的权重,因此例如,如果特征 1 不重要,则会为其分配接近 0 的权重。

如果在预测时顺序不同,则重要特征将乘以这个几乎为零的权重,并且预测将完全关闭。

elyase是正确的。 scikit-learn只会按照您给出的任何顺序获取数据。因此,必须确保数据在训练和预测期间的顺序相同。

下面是一个简单的说明示例:

培训时间:

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
x = pd.DataFrame({
    'feature_1': [0, 0, 1, 1],
    'feature_2': [0, 1, 0, 1]
})
y = [0, 0, 1, 1]
model.fit(x, y) 
# we now have a model that 
# (i)  predicts 0 when x = [0, 0] or [0, 1], and 
# (ii) predicts 1 when x = [1, 0] or [1, 1]

预测时间:

# positive example
http_request_payload = {
    'feature_1': 0,
    'feature_2': 1
}
input_features = pd.DataFrame([http_request_payload])
model.predict(input_features) # this returns 0, as expected

# negative example
http_request_payload = {
    'feature_2': 1,    # notice that the order is jumbled up
    'feature_1': 0
}
input_features = pd.DataFrame([http_request_payload])
model.predict(input_features) # this returns 1, when it should have returned 0. 
# scikit-learn doesn't care about the key-value mapping of the features. 
# it simply vectorizes the dataframe in whatever order it comes in.

这就是我在训练期间缓存列顺序的方式,以便我可以在预测期间使用它。

# training
x = pd.DataFrame([...])
column_order = x.columns
model = SomeModel().fit(x, y) # train model
# save the things that we need at prediction time. you can also use pickle if you don't want to pip install joblib
import joblib  
joblib.dump(model, 'my_model.joblib') 
joblib.dump(column_order, 'column_order.txt') 
# load the artifacts from disk
model = joblib.load('linear_model.joblib') 
column_order = joblib.load('column_order.txt') 
# imaginary http request payload
request_payload = { 'feature_1': ..., 'feature_1': ... }
# create empty dataframe with the right shape and order (using column_order)
input_features = pd.DataFrame([], columns=column_order)
input_features = input_features.append(request_payload, ignore_index=True)
input_features = input_features.fillna(0) # handle any missing data however you like
model.predict(input_features.values.tolist())

相关内容

  • 没有找到相关文章

最新更新