使用编码器控制直流电机



我正在尝试使用连接到电动机的Arduino Uno和编码器来控制两个DC电机的速度。

我已经编写了一个代码来检查编码器的位置是否发生了变化,并且根据计算电动机的速度。

ive使用此网站作为代码:

在计算编码器的新位置与编码器的旧位置之间的差异时,我遇到了问题。由于某种原因,即使速度保持不变,差异也会不断上升。

到目前为止,这是我的代码:

#define pwmLeft 10
#define pwmRight 5
#define in1 9
#define in2 8
#define in3 7
#define in4 6
//MOTOR A
int motorSpeedA = 100;
static int pinA = 2; // Our first hardware interrupt pin is digital pin 2
static int pinB = 3; // Our second hardware interrupt pin is digital pin 3
volatile byte aFlag = 0; // let's us know when we're expecting a rising edge on pinA to signal that the encoder has arrived at a detent
volatile byte bFlag = 0; // let's us know when we're expecting a rising edge on pinB to signal that the encoder has arrived at a detent (opposite direction to when aFlag is set)
volatile long encoderPos = 0; //this variable stores our current value of encoder position. Change to int or uin16_t instead of byte if you want to record a larger range than 0-255
volatile long oldEncPos = 0; //stores the last encoder position value so we can compare to the current reading and see if it has changed (so we know when to print to the serial monitor)
volatile long reading = 0; //somewhere to store the direct values we read from our interrupt pins before checking to see if we have moved a whole detent
//MOTOR B
static int pinC = 12; // Our first hardware interrupt pin is digital pin 2
static int pinD = 33; // Our second hardware interrupt pin is digital pin 3
volatile byte cFlag = 0; // let's us know when we're expecting a rising edge on pinA to signal that the encoder has arrived at a detent
volatile byte dFlag = 0; // let's us know when we're expecting a rising edge on pinB to signal that the encoder has arrived at a detent (opposite direction to when aFlag is set)
volatile long encoderPosB = 0; //this variable stores our current value of encoder position. Change to int or uin16_t instead of byte if you want to record a larger range than 0-255
volatile long oldEncPosB = 0; //stores the last encoder position value so we can compare to the current reading and see if it has changed (so we know when to print to the serial monitor)
volatile long readingB = 0;
int tempPos;
long vel;
unsigned long newtime;
unsigned long oldtime = 0;
void setup() {
  //MOTOR A
  pinMode(pinA, INPUT_PULLUP); // set pinA as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
  pinMode(pinB, INPUT_PULLUP); // set pinB as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
  attachInterrupt(0, PinA, RISING); // set an interrupt on PinA, looking for a rising edge signal and executing the "PinA" Interrupt Service Routine (below)
  attachInterrupt(1, PinB, RISING); // set an interrupt on PinB, looking for a rising edge signal and executing the "PinB" Interrupt Service Routine (below)
  //MOTOR B
  pinMode(pinC, INPUT_PULLUP); // set pinA as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
  pinMode(pinD, INPUT_PULLUP); // set pinB as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
  attachInterrupt(0, PinC, RISING); // set an interrupt on PinA, looking for a rising edge signal and executing the "PinA" Interrupt Service Routine (below)
  attachInterrupt(1, PinD, RISING);
  Serial.begin(9600); // start the serial monitor link
  pinMode (in1, OUTPUT);
  pinMode (in2, OUTPUT);
  pinMode (in3, OUTPUT);
  pinMode (in4, OUTPUT);
  digitalWrite (8, HIGH);
  digitalWrite (9, LOW); //LOW
  digitalWrite (7, LOW); //LOW
  digitalWrite (6, HIGH);
  pinMode (pwmLeft, OUTPUT);
  pinMode (pwmRight, OUTPUT);
}
void PinA(){
  cli(); //stop interrupts happening before we read pin values
  reading = PIND & 0xC; // read all eight pin values then strip away all but pinA and pinB's values
  if(reading == B00001100 && aFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
    encoderPos --; //decrement the encoder's position count
    bFlag = 0; //reset flags for the next turn
    aFlag = 0; //reset flags for the next turn
  } else if (reading == B00000100) bFlag = 1; //signal that we're expecting pinB to signal the transition to detent from free rotation
  sei(); //restart interrupts
}
void PinB(){
  cli(); //stop interrupts happening before we read pin values
  reading = PIND & 0xC; //read all eight pin values then strip away all but pinA and pinB's values
  if (reading == B00001100 && bFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
    encoderPos ++; //increment the encoder's position count
    bFlag = 0; //reset flags for the next turn
    aFlag = 0; //reset flags for the next turn
  } else if (reading == B00001000) aFlag = 1; //signal that we're expecting pinA to signal the transition to detent from free rotation
  sei(); //restart interrupts
}
void PinC(){
  cli(); //stop interrupts happening before we read pin values
  readingB = PIND & 0xC; // read all eight pin values then strip away all but pinA and pinB's values
  if(readingB == B00001100 && cFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
    encoderPosB --; //decrement the encoder's position count
    dFlag = 0; //reset flags for the next turn
    cFlag = 0; //reset flags for the next turn
  } else if (readingB == B00000100) dFlag = 1; //signal that we're expecting pinB to signal the transition to detent from free rotation
  sei(); //restart interrupts
}
void PinD(){
  cli(); //stop interrupts happening before we read pin values
  readingB = PIND & 0xC; //read all eight pin values then strip away all but pinA and pinB's values
  if (readingB == B00001100 && dFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
    encoderPosB ++; //increment the encoder's position count
    dFlag = 0; //reset flags for the next turn
    cFlag = 0; //reset flags for the next turn
  } else if (readingB == B00001000) cFlag = 1; //signal that we're expecting pinA to signal the transition to detent from free rotation
  sei(); //restart interrupts
}
void loop(){
  analogWrite(pwmLeft, motorSpeedA);
  analogWrite(pwmRight, motorSpeedA);
  if(oldEncPos != encoderPos) {
    newtime = millis();
    tempPos = encoderPos - oldEncPos;
    vel = tempPos / (newtime - oldtime);
    Serial.println(tempPos);
    oldEncPos = encoderPos;
    oldtime = newtime;
    delay(250);
  } 
  if(oldEncPosB != encoderPosB) {
    Serial.println(encoderPosB);
    oldEncPosB = encoderPosB;
  }    
}

这两个if语句只是为了检查编码器是否正常工作。在第一个IF语句中,我正在尝试进行速度的计算。

我会感谢任何反馈。

谢谢。

编辑:

我发现有一个编码器库,这使一切变得更加容易。

所以现在我的代码看起来像这样:

#include <Encoder.h>
#define pwmLeft 10
#define pwmRight 5
Encoder myEncA(3, 2);
Encoder myEncB(13, 12);
unsigned long oldtimeA = 0;
unsigned long oldtimeB = 0;
int speedA = 100;
int speedB = 130;
void setup() {
  Serial.begin(9600);
  digitalWrite (8, HIGH);
  digitalWrite (9, LOW); //LOW
  digitalWrite (7, LOW); //LOW
  digitalWrite (6, HIGH);
  pinMode (pwmLeft, OUTPUT);
  pinMode (pwmRight, OUTPUT);
}
long oldPositionA  = -999;
long oldPositionB  = -999;
void loop() {
  analogWrite(pwmLeft, speedA);
  analogWrite(pwmRight, speedB);
  long newPositionA = myEncA.read();
  long newPositionB = myEncB.read();
  if ((newPositionA != oldPositionA) || (newPositionB != oldPositionB)) {
    unsigned long newtimeA = millis ();
    long positionA = newPositionA - oldPositionA;
    long positionB = newPositionB - oldPositionB;
    long velB = (positionB) / (newtimeA - oldtimeA);
    long velA = (positionA) / (newtimeA - oldtimeA);
    oldtimeA = newtimeA;
    oldPositionA = newPositionA;
    oldPositionB = newPositionB;
    Serial.println(velB);
  }
}

我仍然在" B"电机上遇到问题,由于某种原因,计算仍然不在。

电动机" a"工作正常

几个问题,包括loop()中的零错误划分。此扫描导致您的控制器重置。在进行分区时,请务必检查除数的值!

仅使用正面过渡不必要地将读数的分辨率降低2。

Arduino是一个8位控制器...读取int需要多个指令,这意味着在读取由中断例程修改的int之前,您应该禁用中断。否则将导致vakue读取中的奇数跳跃。这通常是这样完成的:

//...
NoInterrupts();
int copyOfValue = value;   // use the copy to work with.
interrupts();
//...

在您的情况下,单个字节值可能足以存储移动,每30毫秒重置一次,这应该为您提供255脉冲/30ms = 8500脉冲/秒/秒或1275000 rpm的最高速度。转动编码器。:)在这种情况下,无需禁用阅读中断。

每30ms的读数为1个读数,1个刻度/30ms = 33 tick/秒或85 rpm。运动有点高。根据您的应用程序,您可能需要平均读数。

另外,您使用的算法肯定不会可行。主要原因是读取和调整之间的延迟太小。大多数读数将为零。删除println()调用时,您将遇到问题。我建议在读数之间至少有30毫秒的步调。根据您的应用程序,100毫秒可能会更好一些。使用float变量的速度平均肯定会有所帮助。

void loop()
{
  //...
  if(oldEncPos != encoderPos) {
    newtime = millis();
    tempPos = encoderPos - oldEncPos;
    vel = tempPos / (newtime - oldtime);   // <--  if newtime == oltime => divide by zero.
    //...
  } 
  //...
}

编码器阅读代码似乎非常复杂...

#define PIN_A  2  // encoder bit 0
#define PIN_B  3  // encoder bit 1
volatile char encVal1;
volatile unsigned char encPos1;  // using char 
void OnEncoder1Change()
{
   char c = (digitalRead(pinA) ? 0b01 : 0)
          + (digitalRead(pinB) ? 0b10 : 0);  // read
   char delta = (c - encVal1) & 0b11;        // get difference, mask
   if (delta == 1)                           // delta is either 1 or 3
       ++encPos1;
   else
       --encPos1;
   encVal1 = c;                              // keep reading for next time.
   encPos1 += delta;                         // get position.
   // no need to call sei()
}
setup()
{
  pinMode(pinA, INPUT_PULLUP);
  pinMode(pinB, INPUT_PULLUP);
  // get an initial value
  encValA  = digitalRead(pinA) ? 0b01 : 0;
  encValA += digitalRead(pinB) ? 0b10 : 0;
  // use digitalPinToInterrupt() to map interrupts to a pin #
  // ask for interrupt on change, this doubles .
  attachInterrupt(digitalPinToInterrupt(PIN_A), OnEncoder1Change, CHANGE);  
  attachInterrupt(digitalPinToInterrupt(PIN_B), OnEncoder1Change, CHANGE);

  //...
}
unsigned char oldTime;
unsigned char oldPos;
int speed;
void loop()
{
    unsigned char time = millis();
    if (time - oldTime > 30)        // pace readings so you have a reasonable value.
    {
        unsigned char pos = encPos1;
        signed char delta = pos - oldPos;
        speed = 1000 * delta) / (time - oldTime);  // signed ticks/s
        encPos1 -= pos;  // reset using subtraction, do you don't miss out 
                         // on any encoder pulses.
        oldTime = time;
    }
}

最新更新