这篇文章说,CUDA 8改进了Pascal GPU上的统一内存支持,以便"在支持平台上,使用默认操作系统分配器(例如'malloc'或'new')分配的内存可以使用相同的指针从GPU代码和CPU代码访问"。
我对此感到兴奋,并编写了一个小型测试程序,看看我的系统是否支持此功能:
#include <stdio.h>
#define CUDA_CHECK( call ) {
cudaError_t code = ( call );
if ( code != cudaSuccess ) {
const char* msg = cudaGetErrorString( code );
printf( "%s #%d: %sn", __FILE__, __LINE__, msg );
}
}
#define N 10
__global__
void test_unified_memory( int* input, int* output )
{
output[ threadIdx.x ] = input[ threadIdx.x ] * 2;
}
int main()
{
int* input = (int*) malloc( N );
int* output = (int*) malloc( N );
for ( int i = 0; i < N; ++i ) input[ i ] = i;
test_unified_memory <<< 1, N >>>( input, output );
CUDA_CHECK( cudaDeviceSynchronize() );
for ( int i = 0; i < N; ++i ) printf( "%d, ", output[ i ] );
free( input );
free( output );
}
但它没有用。
我想知道"支持平台"是什么意思。以下是我的系统配置:
$uname -r
3.10.0-327.el7.x86_64
$nvidia-smi
Tue Jan 10 14:46:11 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.26 Driver Version: 375.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 TITAN X (Pascal) Off | 0000:01:00.0 Off | N/A |
| 36% 61C P0 88W / 250W | 2MiB / 12189MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
$deviceQuery
NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "TITAN X (Pascal)"
CUDA Driver Version / Runtime Version 8.0 / 7.5
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 12189 MBytes (12781551616 bytes)
MapSMtoCores for SM 6.1 is undefined. Default to use 128 Cores/SM
MapSMtoCores for SM 6.1 is undefined. Default to use 128 Cores/SM
(28) Multiprocessors, (128) CUDA Cores/MP: 3584 CUDA Cores
GPU Max Clock rate: 1531 MHz (1.53 GHz)
Memory Clock rate: 5005 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 3145728 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = TITAN X (Pascal)
Result = PASS
答案可能只是泰坦X/GP102不支持此功能。但是我找不到有关此的任何信息/文档。任何人都可以让我知道我的配置是否支持它,并指出我参考此类信息?谢谢。
正如评论中建议的那样,它可能与主机操作系统有关。那么,对主机的要求是什么,如何检查/修复?
这个新的统一内存功能似乎需要一个实验性的 Linux 内核补丁,该补丁尚未集成到任何主线内核树中。 它应该被视为未来的功能,而不是现在可以使用的功能。
编辑以补充一点,如注释中所述,您也在使用 CUDA 7.5,并且无论主机内核问题如何,您都需要使用 CUDA 8 来实现此功能。