我正在尝试使用cuSOLVER库实现Cholesky分解。我是一名初级CUDA程序员,我一直指定块大小和网格大小,但我不知道程序员如何使用cuSOLVER函数显式设置这些大小。
以下是文档:http://docs.nvidia.com/cuda/cusolver/index.html#introduction
QR分解是使用cuSOLVER库实现的(参见此处的示例:http://docs.nvidia.com/cuda/cusolver/index.html#ormqr-示例1),并且即使在那里也不设置上述两个参数。
总之,我有以下问题
- 如何使用cuSOLVER库设置参数:块大小和栅格大小
- NVIDIA文档中提到的QR示例代码是如何做到这一点的
potrf
函数轻松执行Cholesky分解。
Utilities.cu
和Utilities.cuh
文件保留在本页,此处省略。该示例实现了CPU以及GPU方法。
#include "cuda_runtime.h"
#include "device_launch_paraMeters.h"
#include<iostream>
#include <fstream>
#include<iomanip>
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include <cusolverDn.h>
#include <cublas_v2.h>
#include <cuda_runtime_api.h>
#include "Utilities.cuh"
#define prec_save 10
/******************************************/
/* SET HERMITIAN POSITIVE DEFINITE MATRIX */
/******************************************/
// --- Credit to: https://math.stackexchange.com/questions/357980/how-to-generate-random-symmetric-positive-definite-matrices-using-matlab
void setPDMatrix(double * __restrict h_A, const int N) {
// --- Initialize random seed
srand(time(NULL));
double *h_A_temp = (double *)malloc(N * N * sizeof(double));
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
h_A_temp[i * N + j] = (float)rand() / (float)RAND_MAX;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
h_A[i * N + j] = 0.5 * (h_A_temp[i * N + j] + h_A_temp[j * N + i]);
for (int i = 0; i < N; i++) h_A[i * N + i] = h_A[i * N + i] + N;
}
/************************************/
/* SAVE REAL ARRAY FROM CPU TO FILE */
/************************************/
template <class T>
void saveCPUrealtxt(const T * h_in, const char *filename, const int M) {
std::ofstream outfile;
outfile.open(filename);
for (int i = 0; i < M; i++) outfile << std::setprecision(prec_save) << h_in[i] << "n";
outfile.close();
}
/************************************/
/* SAVE REAL ARRAY FROM GPU TO FILE */
/************************************/
template <class T>
void saveGPUrealtxt(const T * d_in, const char *filename, const int M) {
T *h_in = (T *)malloc(M * sizeof(T));
gpuErrchk(cudaMemcpy(h_in, d_in, M * sizeof(T), cudaMemcpyDeviceToHost));
std::ofstream outfile;
outfile.open(filename);
for (int i = 0; i < M; i++) outfile << std::setprecision(prec_save) << h_in[i] << "n";
outfile.close();
}
/********/
/* MAIN */
/********/
int main(){
const int N = 1000;
// --- CUDA solver initialization
cusolverDnHandle_t solver_handle;
cusolveSafeCall(cusolverDnCreate(&solver_handle));
// --- CUBLAS initialization
cublasHandle_t cublas_handle;
cublasSafeCall(cublasCreate(&cublas_handle));
/***********************/
/* SETTING THE PROBLEM */
/***********************/
// --- Setting the host, N x N matrix
double *h_A = (double *)malloc(N * N * sizeof(double));
setPDMatrix(h_A, N);
// --- Allocate device space for the input matrix
double *d_A; gpuErrchk(cudaMalloc(&d_A, N * N * sizeof(double)));
// --- Move the relevant matrix from host to device
gpuErrchk(cudaMemcpy(d_A, h_A, N * N * sizeof(double), cudaMemcpyHostToDevice));
/****************************************/
/* COMPUTING THE CHOLESKY DECOMPOSITION */
/****************************************/
// --- cuSOLVE input/output parameters/arrays
int work_size = 0;
int *devInfo; gpuErrchk(cudaMalloc(&devInfo, sizeof(int)));
// --- CUDA CHOLESKY initialization
cusolveSafeCall(cusolverDnDpotrf_bufferSize(solver_handle, CUBLAS_FILL_MODE_LOWER, N, d_A, N, &work_size));
// --- CUDA POTRF execution
double *work; gpuErrchk(cudaMalloc(&work, work_size * sizeof(double)));
cusolveSafeCall(cusolverDnDpotrf(solver_handle, CUBLAS_FILL_MODE_LOWER, N, d_A, N, work, work_size, devInfo));
int devInfo_h = 0; gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
if (devInfo_h != 0) std::cout << "Unsuccessful potrf executionnn" << "devInfo = " << devInfo_h << "nn";
// --- At this point, the lower triangular part of A contains the elements of L.
/***************************************/
/* CHECKING THE CHOLESKY DECOMPOSITION */
/***************************************/
saveCPUrealtxt(h_A, "D:\Project\solveSquareLinearSystemCholeskyCUDA\solveSquareLinearSystemCholeskyCUDA\h_A.txt", N * N);
saveGPUrealtxt(d_A, "D:\Project\solveSquareLinearSystemCholeskyCUDA\solveSquareLinearSystemCholeskyCUDA\d_A.txt", N * N);
cusolveSafeCall(cusolverDnDestroy(solver_handle));
return 0;
}
编辑
Cholesky分解要求相关矩阵是Hermitian的并且是正定的。对称和正定矩阵可以通过"如何使用MATLAB生成随机对称正定矩阵?"中的方法生成?。
以下Matlab代码可用于检查结果
clear all
close all
clc
warning off
N = 1000;
% --- Setting the problem solution
x = ones(N, 1);
load h_A.txt
A = reshape(h_A, N, N);
yMatlab = A * x;
Lmatlab = chol(A, 'lower');
xprime = inv(Lmatlab) * yMatlab;
xMatlab = inv(Lmatlab') * xprime;
fprintf('Percentage rms of solution in Matlab %fn', 100 * sqrt(sum(sum(abs(xMatlab - x).^2)) / sum(sum(abs(x).^2))));
load d_A.txt
LCUDA = tril(reshape(d_A, N, N));
fprintf('Percentage rms of Cholesky decompositions in Matlab and CUDA %fn', 100 * sqrt(sum(sum(abs(Lmatlab - LCUDA).^2)) / sum(sum(abs(Lmatlab).^2))));
load xCUDA.txt
fprintf('Percentage rms of solution in Matlab %fn', 100 * sqrt(sum(sum(abs(xCUDA - x).^2)) / sum(sum(abs(x).^2))));
使用库(如cusolver、cublas或cusparse)时,您不会显式设置块大小(或网格大小)。
当库实际运行库内部的设备代码时,它会选择这些代码。