GraphFrames api是否支持在当前版本中创建二分图?
当前版本:0.1.0
Spark版本:1.6.1
正如这个问题的评论中所指出的,GraphFrames和GraphX都没有内置的对二分图的支持。然而,它们都有足够的灵活性来创建二分图。有关GraphX解决方案,请参见上一个答案。该解决方案使用不同顶点/对象类型之间的共享特性。虽然这对RDDs
有效,但对DataFrames
无效。DataFrame
中的一行有一个固定的模式——它有时不能包含price
列,有时也不能。它可以有一个price
列,有时是null
,但该列必须存在于每一行中。
相反,GraphFrames
的解决方案似乎是,您需要定义一个DataFrame
,它本质上是二分图中两种类型对象的线性子类型——它必须包含这两种类型的对象的所有字段。这其实很简单——一个join
和full_outer
会给你这个。类似这样的东西:
val players = Seq(
(1,"dave", 34),
(2,"griffin", 44)
).toDF("id", "name", "age")
val teams = Seq(
(101,"lions","7-1"),
(102,"tigers","5-3"),
(103,"bears","0-9")
).toDF("id","team","record")
然后,您可以创建一个超级集合DataFrame
,如下所示:
val teamPlayer = players.withColumnRenamed("id", "l_id").join(
teams.withColumnRenamed("id", "r_id"),
$"r_id" === $"l_id", "full_outer"
).withColumn("l_id", coalesce($"l_id", $"r_id"))
.drop($"r_id")
.withColumnRenamed("l_id", "id")
teamPlayer.show
+---+-------+----+------+------+
| id| name| age| team|record|
+---+-------+----+------+------+
|101| null|null| lions| 7-1|
|102| null|null|tigers| 5-3|
|103| null|null| bears| 0-9|
| 1| dave| 34| null| null|
| 2|griffin| 44| null| null|
+---+-------+----+------+------+
你可以用structs
:做得更干净一点
val tpStructs = players.select($"id" as "l_id", struct($"name", $"age") as "player").join(
teams.select($"id" as "r_id", struct($"team",$"record") as "team"),
$"l_id" === $"r_id",
"full_outer"
).withColumn("l_id", coalesce($"l_id", $"r_id"))
.drop($"r_id")
.withColumnRenamed("l_id", "id")
tpStructs.show
+---+------------+------------+
| id| player| team|
+---+------------+------------+
|101| null| [lions,7-1]|
|102| null|[tigers,5-3]|
|103| null| [bears,0-9]|
| 1| [dave,34]| null|
| 2|[griffin,44]| null|
+---+------------+------------+
我还将指出,或多或少相同的解决方案将在GraphX
和RDDs
中工作。您总是可以通过连接两个不共享任何traits
:的case classes
来创建顶点
case class Player(name: String, age: Int)
val playerRdd = sc.parallelize(Seq(
(1L, Player("date", 34)),
(2L, Player("griffin", 44))
))
case class Team(team: String, record: String)
val teamRdd = sc.parallelize(Seq(
(101L, Team("lions", "7-1")),
(102L, Team("tigers", "5-3")),
(103L, Team("bears", "0-9"))
))
playerRdd.fullOuterJoin(teamRdd).collect foreach println
(101,(None,Some(Team(lions,7-1))))
(1,(Some(Player(date,34)),None))
(102,(None,Some(Team(tigers,5-3))))
(2,(Some(Player(griffin,44)),None))
(103,(None,Some(Team(bears,0-9))))
考虑到前面的答案,这似乎是一种更灵活的处理方式——不必在组合的对象之间共享trait
。