我有一个点云C,其中每个点都有一个关联的值。 假设这些点在二维空间中,因此每个点都可以用三元组(x,y,v)表示。
我想找到局部最大值的点子集。 也就是说,对于某个半径 R,我想找到 C 中点 S 的子集,这样对于 S 中的任何点 Pi(值为 vi),在 Pi 的 R 距离内,C 中没有点 Pj,其值 vj 大于 vi。
我看到如何在 O(N^2) 时间内做到这一点,但这似乎很浪费。 有没有有效的方法可以做到这一点?
旁注:
- 这个问题的根源是我试图在稀疏矩阵中找到局部最大值,所以在我的例子中,x、y 是有序的整数 indeces - 如果这简化了问题,请告诉我!
- 如果解决方案只是曼哈顿距离或其他什么,我非常高兴。
- 我在 python 中,所以如果有某种不错的矢量化 numpy 方法来做到这一点,那就太好了。
根据Yves的建议,这里有一个答案,它使用了scipy的KDTree:
from scipy.spatial.kdtree import KDTree
import numpy as np
def locally_extreme_points(coords, data, neighbourhood, lookfor = 'max', p_norm = 2.):
'''
Find local maxima of points in a pointcloud. Ties result in both points passing through the filter.
Not to be used for high-dimensional data. It will be slow.
coords: A shape (n_points, n_dims) array of point locations
data: A shape (n_points, ) vector of point values
neighbourhood: The (scalar) size of the neighbourhood in which to search.
lookfor: Either 'max', or 'min', depending on whether you want local maxima or minima
p_norm: The p-norm to use for measuring distance (e.g. 1=Manhattan, 2=Euclidian)
returns
filtered_coords: The coordinates of locally extreme points
filtered_data: The values of these points
'''
assert coords.shape[0] == data.shape[0], 'You must have one coordinate per data point'
extreme_fcn = {'min': np.min, 'max': np.max}[lookfor]
kdtree = KDTree(coords)
neighbours = kdtree.query_ball_tree(kdtree, r=neighbourhood, p = p_norm)
i_am_extreme = [data[i]==extreme_fcn(data[n]) for i, n in enumerate(neighbours)]
extrema, = np.nonzero(i_am_extreme) # This line just saves time on indexing
return coords[extrema], data[extrema]
(kD 树的 2D 实例)。经过 N.Log(N) 时间预处理后,它将允许您在大约 Log(N) + K 时间(平均找到的 K 个邻居)内围绕所有点执行固定半径的近邻搜索,总共 N.Log(N)+ K.N。它将完美地与曼哈顿的距离共存。
我找到了这个解决方案,但它可能是 O(N^2):
import numpy as np
# generate test data
n = 10
foo = np.random.rand(n,n)
# fixed test data for visual back-checking
# foo = np.array([[ 0.12439309, 0.88878825, 0.21675684, 0.21422532, 0.7016789 ],
# [ 0.14486462, 0.40642871, 0.4898418 , 0.41611303, 0.12764404],
# [ 0.41853585, 0.22216484, 0.36113181, 0.5708699 , 0.3874901 ],
# [ 0.24314391, 0.22488507, 0.22054467, 0.25387521, 0.46272496],
# [ 0.99097341, 0.76083447, 0.37941783, 0.932519 , 0.9668254 ]])
# list to collect local maxima
local_maxima = []
# distance in x / y to define region of interest around current center coordinate
# roi = 1 corresponds to a region of interest of 3x3 (except at borders)
roi = 1
# give pseudo-coordinates
x,y = np.meshgrid(range(foo.shape[0]), range(foo.shape[1]))
for i in range(foo.shape[0]):
for j in range(foo.shape[1]):
x0 = x[i,j]
y0 = y[i,j]
z0 = foo[i,j]
# index calculation to avoid out-of-bounds error when taking sub-matrix
mask_x = abs(x - x0) <= roi
mask_y = abs(y - y0) <= roi
mask = mask_x & mask_y
if np.max(foo[mask]) == z0:
local_maxima.append((i, j))
print local_maxima
这一切都是关于在矩阵上定义滑动窗口/过滤器。我想到的所有其他解决方案都指向绝对最大值(例如直方图)......
但是我希望我的ansatz在某种程度上是有用的......
编辑:这是另一个解决方案,它应该比第一个更快,但仍然是 O(N^2),并且它不依赖于直线网格数据:
import numpy as np
# generate test data
# points = np.random.rand(10,3)
points = np.array([[ 0.08198248, 0.25999721, 0.07041999],
[ 0.19091977, 0.05404123, 0.25826508],
[ 0.8842875 , 0.90132467, 0.50512316],
[ 0.33320528, 0.74069399, 0.36643752],
[ 0.27789568, 0.14381512, 0.13405309],
[ 0.73586202, 0.4406952 , 0.52345838],
[ 0.76639731, 0.70796547, 0.70692905],
[ 0.09164532, 0.53234394, 0.88298593],
[ 0.96164975, 0.60700481, 0.22605181],
[ 0.53892635, 0.95173308, 0.22371167]])
# list to collect local maxima
local_maxima = []
# distance in x / y to define region of interest around current center coordinate
radius = 0.25
for i in range(points.shape[0]):
# radial mask with radius radius, could be beautified via numpy.linalg
mask = np.sqrt((points[:,0] - points[i,0])**2 + (points[:,1] - points[i,1])**2) <= radius
# if current z value equals z_max in current region of interest, append to result list
if points[i,2] == np.max(points[mask], axis = 0)[2]:
local_maxima.append(tuple(points[i]))
结果:
local_maxima = [
(0.19091976999999999, 0.054041230000000003, 0.25826507999999998),
(0.33320527999999999, 0.74069399000000002, 0.36643752000000002),
(0.73586202000000001, 0.44069520000000001, 0.52345838),
(0.76639731, 0.70796546999999999, 0.70692904999999995),
(0.091645320000000002, 0.53234393999999996, 0.88298593000000003),
(0.53892635, 0.95173308000000001, 0.22371167)
]