我很好奇mapreduce作业是否在一台机器上使用多线程。例如,我在hadoop集群中有10台服务器,默认情况下,如果输入文件足够大,就会有10个映射器。单个映射器是否在单个机器中使用多线程?
单个映射器是否在单个机器中使用多线程?
是的。Mapreduce作业可以使用多线程映射器(多个线程或线程池运行map
方法)
-
我已经使用了更好的CPU利用率仅映射Hbase作业…
MultiThreadedMapper
是一个很好的选择,如果你的操作是高度CPU密集的,可以提高速度。
映射器类应该扩展org.apache.hadoop.mapreduce.lib.map.MultithreadedMapper
而不是常规的org.apache.hadoop.mapreduce.Mapper
。
Multithreadedmapper
有不同的run()实现方法。像下面。run(org.apache.hadoop.mapreduce.Mapper.Context context)
使用线程池运行应用程序的映射
您可以通过
设置MultiThreadedMapper
中映射器内的线程数。 MultithreadedMapper.setNumberOfThreads(n);
或者您可以在加载属性文件mapred.map.multithreadedrunner.threads = n
时设置该属性并使用上述setter方法(以作业为基础)来控制CPU占用较少的作业。
这样做的影响,你可以看到在mapreduce计数器,特别是CPU相关的计数器。
multithreadadmapper实现示例代码片段:
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.map.MultithreadedMapper;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import java.io.IOException;
import java.util.regex.Pattern;
public class MultithreadedWordCount {
// class should be thread safe
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
public static enum PREPOST { SETUP, CLEANUP }
@Override()
protected void setup(Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws java.io.IOException, java.lang.InterruptedException {
// will be called several times
context.getCounter(PREPOST.SETUP).increment(1);
}
@Override
protected void map(LongWritable key, Text value,
Context context) throws IOException, InterruptedException {
String[] words = value.toString().toLowerCase().split("[\p{Blank}[\p{Punct}]]+");
for (String word : words) {
context.write(new Text(word), new LongWritable(1));
}
}
@Override()
protected void cleanup(Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws java.io.IOException, InterruptedException {
// will be called several times
context.getCounter(PREPOST.CLEANUP).increment(1);
}
}
public static class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context
) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value: values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = new Job();
job.setJarByClass(WordCount.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
MultithreadedMapper.setMapperClass(job, MultithreadedWordCount.WordCountMapper.class);
MultithreadedMapper.setNumberOfThreads(job, 10);
job.setMapperClass(MultithreadedMapper.class);
job.setCombinerClass(MultithreadedWordCount.WordCountReducer.class);
job.setReducerClass(MultithreadedWordCount.WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
/* begin defaults */
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
/* end defaults */
job.waitForCompletion(true);
}
}
请参考https://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/mapreduce/Mapper.html
应用程序可以覆盖run(Context)方法来对映射处理施加更大的控制,例如多线程映射器等。
此外,还有一个multithreaddmapper。我从来没用过这个