我从URL/端口读取了一些处理,然后写回URL/端口。URL/端口仅允许单个连接(您需要在需要时读写(。
flink可以读取并写入RL端口,但打开2个连接。
我已经使用了基本连接,并通过Flink
从URL/端口使用 // set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment
val data_stream = env.socketTextStream(url, port, socket_stream_deliminator, socket_connection_retries)
.map(x => printInput(x))
.writeToSocket(url, port, new SimpleStringSchema())
//.addSink(new SocketClientSink[String](url, port.toInt, new SimpleStringSchema))
// execute program
env.execute("Flink Streaming Scala API Skeleton")
理想的解决方案或唯一的解决方案是从相同的连接读取和写入,而不是创建2个分开连接
我该怎么做?
正如我在评论中所说的那样,您必须将连接存储在某些静态变量中,因为您的源和水槽否则不会使用相同的连接。您还必须确保使用同一classloader在同一JVM上运行源和接收器,否则您仍然具有多个连接。
我构建了此包装类别类,该类别具有原始的插座连接和该连接的读取器/作者实例。因为您的源将始终在您的水槽之前停止(这就是Flink的工作方式(,所以此类也确实重新连接了。
package example;
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.net.Socket;
public class SocketConnection implements Closeable {
private final String host;
private final int port;
private final Object lock;
private volatile Socket socket;
private volatile BufferedReader reader;
private volatile PrintStream writer;
public SocketConnection(String host, int port) {
this.host = host;
this.port = port;
this.lock = new Object();
this.socket = null;
this.reader = null;
this.writer = null;
}
private void connect() throws IOException {
this.socket = new Socket(this.host, this.port);
this.reader = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));
this.writer = new PrintStream(this.socket.getOutputStream());
}
private void ensureConnected() throws IOException {
// only acquire lock if null
if (this.socket == null) {
synchronized (this.lock) {
// recheck if socket is still null
if (this.socket == null) {
connect();
}
}
}
}
public BufferedReader getReader() throws IOException {
ensureConnected();
return this.reader;
}
public PrintStream getWriter() throws IOException {
ensureConnected();
return this.writer;
}
@Override
public void close() throws IOException {
if (this.socket != null) {
synchronized (this.lock) {
if (this.socket != null) {
this.reader.close();
this.reader = null;
this.writer.close();
this.writer = null;
this.socket.close();
this.socket = null;
}
}
}
}
}
您的主类(或任何其他类(包含此类的一个实例,然后您的源和接收器都可以访问:
package example;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class Main {
public static final SocketConnection CONNECTION = new SocketConnection("your-host", 12345);
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.addSource(new SocketTextStreamSource())
.addSink(new SocketTextStreamSink());
env.execute("Flink Streaming Scala API Skeleton");
}
}
您的源函数看起来或多或少地像这样:
package example;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
public class SocketTextStreamSource implements SourceFunction<String> {
private volatile boolean running;
public SocketTextStreamSource() {
this.running = true;
}
@Override
public void run(SourceContext<String> context) throws Exception {
try (SocketConnection conn = Main.CONNECTION) {
String line;
while (this.running && (line = conn.getReader().readLine()) != null) {
context.collect(line);
}
}
}
@Override
public void cancel() {
this.running = false;
}
}
和您的沉积函数:
package example;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
public class SocketTextStreamSink extends RichSinkFunction<String> {
private transient SocketConnection connection;
@Override
public void open(Configuration parameters) throws Exception {
this.connection = Main.CONNECTION;
}
@Override
public void invoke(String value, Context context) throws Exception {
this.connection.getWriter().println(value);
this.connection.getWriter().flush();
}
@Override
public void close() throws Exception {
this.connection.close();
}
}
请注意,我始终使用getReader()
和getWriter()
,因为基础插座可能在此期间已关闭。