我想从 df1 构建一个像 df2 这样的数据帧,始终查找值最接近 0 的列的名称: 其中 clossets_1 - 更接近 x,y 和 z 列的 0 值。 clossets_2 - 更接近 x 和 a 列的 0,因为 x 是 clossets_1 中接收最多的值。 clossets_3 - 更接近 A 列和 B 的 0 值, 因为 A 是clossets_2中接收最多的值。
DF1
df1
# x y z a b
#1 1 2 3 4 3
#2 2 3 4 1 2
#3 3 2 4 2 1
#4 4 3 2 3 6
愿望输出:
df2
# x y z clossets_1 a clossets_2 b clossets_3
#1 1 2 3 x 4 x 3 b
#2 2 3 4 x 1 a 2 a
#3 3 2 4 y 2 a 1 b
#4 4 3 2 z 3 a 2 b
以下是入门的第一步:
cols = c("x","y","z")
df2 = df1
df2$clossets_1 = cols[apply(df1[,cols], 1, function(x) {which(x == min(x))})]
df2
## x y z a b clossets_1
## 1 1 2 3 4 3 x
## 2 2 3 4 1 2 x
## 3 3 2 4 2 1 y
## 4 4 3 2 3 6 z
我以这种方式解决了它,使用@BigFinger答案的第一步和包模式中的mlv((函数在最接近的列中找到重复次数最多的值
library(DescTools)
library(modeest)
library(tibble)
df1 = tibble(x = c(1,2,3,4),
y = c(2,3,2,3),
z = c(3,4,4,2),
clossest_1 = c("x","y","z")[apply(data.frame(x,y,z),1,function(x){which(x == Closest(x,0))})],
a = c(4,1,2,3),
clossest_2 = c(mlv(clossest_1),"a")[apply(data.frame(get(mlv(clossest_1)),a),1,function(x){which(x == Closest(x,0))})],
b = c(3,2,1,2),
clossest_3 = c(mlv(clossest_2),"b")[apply(data.frame(get(mlv(clossest_2)),b),1,function(x){which(x == Closest(x,0))})])
df1
# A tibble: 4 x 8
# x y z clossest_1 a clossest_2 b clossest_3
# <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <chr>
#1 1 2 3 x 4 x 3 b
#2 2 3 4 x 1 a 2 a
#3 3 2 4 y 2 a 1 b
#4 4 3 2 z 3 a 2 b