Reducer没有选择映射器输出文件



我在一个文件夹中有4个文件,文件夹位置是我的输入路径参数。我需要单独找到每个文件的字数,并且应该写入与输入文件同名的文件。

我已经写了mapper类,它可以正确地输出到指定的文件。但是,它没有被减速器处理。我做错的是-我在写mapper输出时没有使用'context',所以空被传递给reducer并产生空白输出。但是,mapper按预期执行,并将文件保存在具有预期文件名的正确位置。我想洗牌和排序&这些文件/那些文件要传递给Reducer。请纠正我。谢谢。

Mapper

package com.oracle.hadoop.multiwordcount;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class MultiWordCountMapper extends
    Mapper<LongWritable, Text, Text, LongWritable> {
protected String filenamekey;
private RecordWriter<Text, LongWritable> writer;
protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
    // Read the line
    String line = value.toString();
    // Split the line into words
    String[] words = line.split(" ");
    // Assign count(1) to each word
    for (String word : words) {
        writer.write(new Text(word), new LongWritable(1));
    }
}
protected void setup(Context context) throws IOException,
        InterruptedException {
    InputSplit split = context.getInputSplit();
    Path path = ((FileSplit) split).getPath();
    // extract parent folder and filename
    filenamekey = path.getParent().getName() + "/" + path.getName();
    // base output folder
    final Path baseOutputPath = FileOutputFormat.getOutputPath(context);
    // output file name
    final Path outputFilePath = new Path(baseOutputPath, filenamekey);
    // We need to override the getDefaultWorkFile path to stop the file
    // being created in the _temporary/taskid folder
    TextOutputFormat<Text, LongWritable> tof = new TextOutputFormat<Text, LongWritable>() {
        @Override
        public Path getDefaultWorkFile(TaskAttemptContext context,
                String extension) throws IOException {
            return outputFilePath;
        }
    };
    // create a record writer that will write to the desired output
    // subfolder
    writer = tof.getRecordWriter(context);
}
protected void cleanup(Context context) throws IOException,
        InterruptedException {
    writer.close(context);
};
}

减速器

package com.oracle.hadoop.multiwordcount;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
public class MultiWordCountReducer extends
        Reducer<Text, LongWritable, Text, LongWritable> {
/*
 * private MultipleOutputs multiouputs;
 * 
 * protected void setup(Context context) throws java.io.IOException
 * ,InterruptedException { multiouputs = new MultipleOutputs(context);
 * 
 * }
 */
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
        Context context) throws java.io.IOException, InterruptedException {
    // Sum the List of values
    long sum = 0;
    for (LongWritable value : values) {
        sum = sum + value.get();
    }
    // Assign Sum to corresponding Word
    context.write(key, new LongWritable(sum));
}
/*
 * protected void cleanup(Context context) throws java.io.IOException
 * ,InterruptedException { multiouputs.close(); };
 */
}
司机

package com.oracle.hadoop.multiwordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MultiWordCountJob implements Tool {
    private Configuration conf;
@Override
public Configuration getConf() {
    return conf;
}
@Override
public void setConf(Configuration conf) {
    this.conf = conf;
}
@Override
public int run(String[] args) throws Exception {
    @SuppressWarnings("deprecation")
    Job mwcj = new Job(getConf());
    // setting the job name
    mwcj.setJobName("Multiple file WordCount Job");
    // to call this as a jar
    mwcj.setJarByClass(this.getClass());
    // setting custom mapper class
    mwcj.setMapperClass(MultiWordCountMapper.class);
    // setting custom reducer class
    mwcj.setReducerClass(MultiWordCountReducer.class);
    // setting no of reducers
    // mwcj.setNumReduceTasks(0);
    // setting custom partitioner class
    // mwcj.setPartitionerClass(WordCountPartitioner.class);
    // setting mapper output key class: K2
    mwcj.setMapOutputKeyClass(Text.class);
    // setting mapper output value class: V2
    mwcj.setMapOutputValueClass(LongWritable.class);
    // setting reducer output key class: K3
    mwcj.setOutputKeyClass(Text.class);
    // setting reducer output value class: V3
    mwcj.setOutputValueClass(LongWritable.class);
    // setting the input format class ,i.e for K1, V1
    mwcj.setInputFormatClass(TextInputFormat.class);
    // setting the output format class
    LazyOutputFormat.setOutputFormatClass(mwcj, TextOutputFormat.class);
    // mwcj.setOutputFormatClass(TextOutputFormat.class);
    // setting the input file path
    FileInputFormat.addInputPath(mwcj, new Path(args[0]));
    // setting the output folder path
    FileOutputFormat.setOutputPath(mwcj, new Path(args[1]));
    Path outputpath = new Path(args[1]);
    // delete the output folder if exists
    outputpath.getFileSystem(conf).delete(outputpath, true);
    // to execute the job and return the status
    return mwcj.waitForCompletion(true) ? 0 : -1;
}
public static void main(String[] args) throws Exception {
    int status = ToolRunner.run(new Configuration(),
            new MultiWordCountJob(), args);
    System.out.println("My Status: " + status);
}
}

在您的驱动类中,您设置的减速机没有一个是0 ->

// setting no of reducers
mwcj.setNumReduceTasks(0);

使其大于0到您想要的任何值。

使用MultipleOutputs,而不是直接写入文件,然后像往常一样使用context.write()方法将键值对传递给reducer。

当然,正如siddhartha jain所说,如果您将numReduceTasks指定为0,则无法拥有reduce阶段。在这种情况下,作业在映射阶段结束。

引用MultipleOutputs:

MultipleOutputs类通过传递给Mapper和Reducer实现的map()和reduce()方法的OutputCollector简化了对作业默认输出以外的其他输出的写入。
,
当在Mapper实现中使用命名输出时,写入名称输出的键/值不是reduce阶段的一部分,只有写入作业OutputCollector的键/值才是reduce阶段的一部分。

要单独处理每个输入文件,请参阅我在您的相关帖子中的回答。

相关内容

  • 没有找到相关文章

最新更新