我在一个文件夹中有4个文件,文件夹位置是我的输入路径参数。我需要单独找到每个文件的字数,并且应该写入与输入文件同名的文件。
我已经写了mapper类,它可以正确地输出到指定的文件。但是,它没有被减速器处理。我做错的是-我在写mapper输出时没有使用'context',所以空被传递给reducer并产生空白输出。但是,mapper按预期执行,并将文件保存在具有预期文件名的正确位置。我想洗牌和排序&这些文件/那些文件要传递给Reducer。请纠正我。谢谢。
Mapper
package com.oracle.hadoop.multiwordcount;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class MultiWordCountMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
protected String filenamekey;
private RecordWriter<Text, LongWritable> writer;
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// Read the line
String line = value.toString();
// Split the line into words
String[] words = line.split(" ");
// Assign count(1) to each word
for (String word : words) {
writer.write(new Text(word), new LongWritable(1));
}
}
protected void setup(Context context) throws IOException,
InterruptedException {
InputSplit split = context.getInputSplit();
Path path = ((FileSplit) split).getPath();
// extract parent folder and filename
filenamekey = path.getParent().getName() + "/" + path.getName();
// base output folder
final Path baseOutputPath = FileOutputFormat.getOutputPath(context);
// output file name
final Path outputFilePath = new Path(baseOutputPath, filenamekey);
// We need to override the getDefaultWorkFile path to stop the file
// being created in the _temporary/taskid folder
TextOutputFormat<Text, LongWritable> tof = new TextOutputFormat<Text, LongWritable>() {
@Override
public Path getDefaultWorkFile(TaskAttemptContext context,
String extension) throws IOException {
return outputFilePath;
}
};
// create a record writer that will write to the desired output
// subfolder
writer = tof.getRecordWriter(context);
}
protected void cleanup(Context context) throws IOException,
InterruptedException {
writer.close(context);
};
}
减速器
package com.oracle.hadoop.multiwordcount;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
public class MultiWordCountReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
/*
* private MultipleOutputs multiouputs;
*
* protected void setup(Context context) throws java.io.IOException
* ,InterruptedException { multiouputs = new MultipleOutputs(context);
*
* }
*/
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
Context context) throws java.io.IOException, InterruptedException {
// Sum the List of values
long sum = 0;
for (LongWritable value : values) {
sum = sum + value.get();
}
// Assign Sum to corresponding Word
context.write(key, new LongWritable(sum));
}
/*
* protected void cleanup(Context context) throws java.io.IOException
* ,InterruptedException { multiouputs.close(); };
*/
}
司机package com.oracle.hadoop.multiwordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MultiWordCountJob implements Tool {
private Configuration conf;
@Override
public Configuration getConf() {
return conf;
}
@Override
public void setConf(Configuration conf) {
this.conf = conf;
}
@Override
public int run(String[] args) throws Exception {
@SuppressWarnings("deprecation")
Job mwcj = new Job(getConf());
// setting the job name
mwcj.setJobName("Multiple file WordCount Job");
// to call this as a jar
mwcj.setJarByClass(this.getClass());
// setting custom mapper class
mwcj.setMapperClass(MultiWordCountMapper.class);
// setting custom reducer class
mwcj.setReducerClass(MultiWordCountReducer.class);
// setting no of reducers
// mwcj.setNumReduceTasks(0);
// setting custom partitioner class
// mwcj.setPartitionerClass(WordCountPartitioner.class);
// setting mapper output key class: K2
mwcj.setMapOutputKeyClass(Text.class);
// setting mapper output value class: V2
mwcj.setMapOutputValueClass(LongWritable.class);
// setting reducer output key class: K3
mwcj.setOutputKeyClass(Text.class);
// setting reducer output value class: V3
mwcj.setOutputValueClass(LongWritable.class);
// setting the input format class ,i.e for K1, V1
mwcj.setInputFormatClass(TextInputFormat.class);
// setting the output format class
LazyOutputFormat.setOutputFormatClass(mwcj, TextOutputFormat.class);
// mwcj.setOutputFormatClass(TextOutputFormat.class);
// setting the input file path
FileInputFormat.addInputPath(mwcj, new Path(args[0]));
// setting the output folder path
FileOutputFormat.setOutputPath(mwcj, new Path(args[1]));
Path outputpath = new Path(args[1]);
// delete the output folder if exists
outputpath.getFileSystem(conf).delete(outputpath, true);
// to execute the job and return the status
return mwcj.waitForCompletion(true) ? 0 : -1;
}
public static void main(String[] args) throws Exception {
int status = ToolRunner.run(new Configuration(),
new MultiWordCountJob(), args);
System.out.println("My Status: " + status);
}
}
在您的驱动类中,您设置的减速机没有一个是0 ->
// setting no of reducers
mwcj.setNumReduceTasks(0);
使其大于0到您想要的任何值。
使用MultipleOutputs,而不是直接写入文件,然后像往常一样使用context.write()方法将键值对传递给reducer。
当然,正如siddhartha jain所说,如果您将numReduceTasks指定为0,则无法拥有reduce阶段。在这种情况下,作业在映射阶段结束。
引用MultipleOutputs:MultipleOutputs类通过传递给Mapper和Reducer实现的map()和reduce()方法的OutputCollector简化了对作业默认输出以外的其他输出的写入。
,
当在Mapper实现中使用命名输出时,写入名称输出的键/值不是reduce阶段的一部分,只有写入作业OutputCollector的键/值才是reduce阶段的一部分。
要单独处理每个输入文件,请参阅我在您的相关帖子中的回答。