我有带前缀的单词。例如:
city|new york
city|London
travel|yes
...
city|new york
我想数一下city|new york
和city|London
的数量(这是经典的字数)。但是,reducer输出应该是像city:{"new york" :2, "london":1}
这样的键值对。这意味着对于每个city
前缀,我希望聚合所有字符串及其计数。
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
// Instead of just result count, I need something like {"city":{"new york" :2, "london":1}}
context.write(key, result);
}
有什么想法吗?
您可以使用reducer的cleanup()
方法来实现这一点(假设您只有一个reducer)。在reduce任务结束时调用一次。
我将为"城市"数据解释这一点。
以下是代码:
package com.hadooptests;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
public class Cities {
public static class CityMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text outKey = new Text();
private IntWritable outValue = new IntWritable(1);
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
outKey.set(value);
context.write(outKey, outValue);
}
}
public static class CityReducer
extends Reducer<Text,IntWritable,Text,Text> {
HashMap<String, Integer> cityCount = new HashMap<String, Integer>();
public void reduce(Text key, Iterable<IntWritable>values,
Context context
) throws IOException, InterruptedException {
for (IntWritable val : values) {
String keyStr = key.toString();
if(keyStr.toLowerCase().startsWith("city|")) {
String[] tokens = keyStr.split("\|");
if(cityCount.containsKey(tokens[1])) {
int count = cityCount.get(tokens[1]);
cityCount.put(tokens[1], ++count);
}
else
cityCount.put(tokens[1], val.get());
}
}
}
@Override
public void cleanup(org.apache.hadoop.mapreduce.Reducer.Context context)
throws IOException,
InterruptedException
{
String output = "{"city":{";
Iterator iterator = cityCount.entrySet().iterator();
while(iterator.hasNext())
{
Map.Entry entry = (Map.Entry) iterator.next();
output = output.concat(""" + entry.getKey() + "":" + Integer.toString((Integer) entry.getValue()) + ", ");
}
output = output.substring(0, output.length() - 2);
output = output.concat("}}");
context.write(output, "");
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "KeyValue");
job.setJarByClass(Cities.class);
job.setMapperClass(CityMapper.class);
job.setReducerClass(CityReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("/in/in.txt"));
FileOutputFormat.setOutputPath(job, new Path("/out/"));
System.exit(job.waitForCompletion(true) ? 0:1);
}
}
映射器:
- 它只输出遇到的每个键的计数。例如,如果它遇到记录"city|new york",则它将输出(键,值)为
减速器:
- 对于每条记录,它会检查密钥是否包含"city|"。它拆分管道上的关键点("|")。并将每个城市的计数存储在HashMap中
- Reducer还覆盖
cleanup
方法。一旦reduce任务结束,就会调用此方法。在这个任务中,HashMap的内容被组合成所需的输出 - 在
cleanup()
中,键作为HashMap的内容输出,值作为空字符串输出
例如,我将以下数据作为输入:
city|new york
city|London
city|new york
city|new york
city|Paris
city|Paris
我得到了以下输出:
{"city":{"London":1, "new york":3, "Paris":2}}
这很简单。
-
使用"city"作为输出键,使用整个记录作为输出值,从映射器发出。
-
U将城市划分为减速器中的一组,并作为另一组旅行。
-
使用和哈希图计算城市和旅行实例,以细化到较低级别。