你好,我被困在这里好几天了,我不知道该怎么办。如何去除&旋转div以改变图像时的Out效果。我猜是旋转的时机不对。
.spinner {
position: relative;
height: 300px;
width: 600px;
animation-name: rotate;
animation-duration: 3s;
animation-timing-function: linear;
animation-iteration-count: infinite;
background: url('https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQugQCqanFP9X3akqA4XtDdm0qja8v9YxdT9OazMzCes7co2SqH');
background-size: cover;
transform-style: preserve-3d;
}
@keyframes rotate {
33.34% {
transform-style: preserve-3d;
background: url('http://media.indiatimes.in/media/content/2015/Apr/adidas-wiki_1428491439_725x725.jpg');
transform: rotateY(180deg);
top: 0;
left: 0;
background-size: cover;
position: absolute;
height: 300px;
width: 600px;
}
66.68% {
transform-style: preserve-3d;
background: url('http://slodive.com/wp-content/uploads/2013/02/popular-logos/puma-logo.jpg');
transform: rotateY(0deg);
top: 0;
left: 0;
background-size: cover;
position: absolute;
height: 300px;
width: 600px;
}
100% {
transform-style: preserve-3d;
background: url('');
transform: rotateY(180deg);
top: 0;
left: 0;
background-size: cover;
position: absolute;
height: 300px;
width: 600px;
}
}
<div class="card_container">
<div class="spinner"></div>
</div>
如果我理解你的要求,好吧,你想要这样:
技巧是你不希望你的背景图像平滑地变化。为了实现这一点,你需要设置两个具有不同属性的关键帧和一个非常接近的百分比。
例如,第一张图像为33.33%,第二张为33.34%。
在本例中,您需要设置
- 背景编号1,从0%到大约1/3 = 33.3%
- 背景数2,从33.34%变为约2/3 = 66.6%
- 背景数3,从66.7%变为100%
旋转必须是平滑的,所以你只能为每个旋转值设置1个关键帧。
.spinner {
position: absolute;
top: 0;
left: 0;
height: 300px;
width: 600px;
animation-name: rotate;
animation-duration: 3s;
animation-timing-function: linear;
animation-iteration-count: infinite;
background: url('https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQugQCqanFP9X3akqA4XtDdm0qja8v9YxdT9OazMzCes7co2SqH');
background-size: cover;
transform-style: preserve-3d;
}
@keyframes rotate {
0% {
transform: rotateY(90deg);
}
0%, 33.33% {
background: url('http://media.indiatimes.in/media/content/2015/Apr/adidas-wiki_1428491439_725x725.jpg');
}
33.33% {
transform: rotateY(-90deg);
}
33.34%, 66.68% {
background: url('http://slodive.com/wp-content/uploads/2013/02/popular-logos/puma-logo.jpg');
}
66.68% {
transform: rotateY(90deg);
}
66.69%, 100% {
background: url('');
}
100% {
transform: rotateY(-90deg);
}
}
<div class="card_container">
<div class="spinner"></div>
</div>