Filter Data完全由用户定义r-多列和筛选器



我正在尝试创建一个函数,该函数将允许用户定义无限多列,并对这些列应用匹配的筛选器。

df <- data.frame(a=1:10, b=round(runif(10)), c=round(runif(10)))
|a| b|c|
|1| 1|1|
|2| 0|0|
|3| 0|1|
|4| 1|0|
|5| 1|0|
|6| 1|0|
|7| 1|1|
|8| 1|1|
|9| 1|0|
|10|1|1|

我希望用户能够根据任意一列筛选数据,并对每一列应用不同的筛选器。我知道以下内容不起作用。但这将是一般的想法。

test <- function(df, fCol, fParam){
df %>% filter(fCol[1] %in% fParam[1] | fCol[2] %in% fParam[2])
}
test(df, c("b","c"),c(1,0)
# Which I would want it to return
|a|b|c|
|4|1|0|
|5|1|0|
|6|1|0|
|9|1|0|

我遇到的问题是,我不知道用户要筛选多少列,也不知道列名。

任何帮助都将不胜感激。如果有问题,请提问。我尽力给了一个代表。

我相信这应该能满足的要求

library(tidyr)
library(dplyr)
test <- function(df,
fCol,
fParam,
match_type = "any")
{
if(!is.element(match_type, c("any","all"))|length(match_type)!=1){
stop()
}
df <- df %>% ungroup() %>%
mutate(..id..=1:n())
meta <- data.frame(fCol=fCol,fParam=fParam)
logi <- df %>%
select("..id..",fCol) %>%
gather(key = "key", value = "value", -..id..) %>%
left_join(., y = meta, by = c("key"="fCol")) %>%
mutate(match = value==fParam) %>%
select(-key,-value, -fParam) %>%
group_by_at(setdiff(names(.),"match")) %>%
summarise(match = ifelse(match_type%in%"any",any(match), all(match)))
df2 <- left_join(df, logi, by = intersect(colnames(df),colnames(logi))) %>%
filter(match)%>%
select(-match, -..id..)
return(df2)
}
df <- data.frame(a=1:10, b=round(runif(10)), c=round(runif(10)))
df
#    a b c
#1   1 0 1
#2   2 1 0
#3   3 0 0
#4   4 0 1
#5   5 0 1
#6   6 0 1
#7   7 1 0
#8   8 1 1
#9   9 1 0
#10 10 1 0
#use "any" to do an | match
test(df, c("b","c"),c(1,0), match_type = "any")
#   a b c
#1  2 1 0
#2  3 0 0
#3  7 1 0
#4  8 1 1
#5  9 1 0
#6 10 1 0
#use "all" to do an & match
test(df, c("b","c"),c(1,0), match_type = "all")
#   a b c
#1  2 1 0
#2  7 1 0
#3  9 1 0
#4 10 1 0

如果要匹配多个值,也可以多次为fCol指定相同的colname

test(df, c("b","b"),c(1,0)) #matches everything but you get the point

(我的原始响应(:

我不确定这是否会给你带来想要,但这是我在用完之前最好的尝试耐心:-(

我相信有一个很好的方法可以使其成为AND过滤器而不是OR,但我我自己不能完全到达那里。(可能是map_dfcinner_join?(

编辑:最终成功!改进了下面的代码(删除了原始代码(

suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(tibble))
suppressPackageStartupMessages(library(purrr))
my_df <- tibble(
a=1:10,
b=round(runif(10)),
c=round(runif(10))
)
my_df
#> # A tibble: 10 x 3
#>        a     b     c
#>    <int> <dbl> <dbl>
#>  1     1     1     0
#>  2     2     1     0
#>  3     3     0     1
#>  4     4     0     0
#>  5     5     1     1
#>  6     6     0     1
#>  7     7     0     0
#>  8     8     0     1
#>  9     9     1     0
#> 10    10     1     0
col_names <- c("b", "c")
tests <- c(1, 0)
#  option 1: with a named function:
make_test_frame <- function(col_name, test) {
tibble({{col_name}} := test)
}
my_df1 <- map2_dfc(col_names, tests, make_test_frame) %>% 
inner_join(x = my_df)
#> Joining, by = c("b", "c")
my_df1
#> # A tibble: 4 x 3
#>       a     b     c
#>   <int> <dbl> <dbl>
#> 1     1     1     0
#> 2     2     1     0
#> 3     9     1     0
#> 4    10     1     0
# 2. or with an anonymous function:
my_df1 <- map2_dfc(
col_names, tests,
function(col_name, test) {
tibble({{col_name}} := test)
}
) %>% 
inner_join(x = my_df)
#> Joining, by = c("b", "c")
my_df1
#> # A tibble: 4 x 3
#>       a     b     c
#>   <int> <dbl> <dbl>
#> 1     1     1     0
#> 2     2     1     0
#> 3     9     1     0
#> 4    10     1     0
# 3. or as one big, hairy function:
filter_df <- function(df, col_names, tests) {
map2_dfc(
col_names, tests,
function(col_name, test) {
tibble({{col_name}} := test)
}
) %>% 
inner_join(x = df)
}
my_df1 <- filter_df(my_df, col_names = c("b", "c"), tests = c(1, 0))
#> Joining, by = c("b", "c")
my_df1
#> # A tibble: 4 x 3
#>       a     b     c
#>   <int> <dbl> <dbl>
#> 1     1     1     0
#> 2     2     1     0
#> 3     9     1     0
#> 4    10     1     0

由reprex包(v0.3.0(于2020-02-28创建

相关内容

  • 没有找到相关文章

最新更新