我使用Python。我有100个zip文件。每个zipfile包含100多个xmlfile。使用xmlfiles创建csvfiles。
from xml.etree.ElementTree import fromstring
import zipfile
from multiprocessing import Process
def parse_xml_for_csv1(data, writer1):
root = fromstring(data)
for node in root.iter('name'):
writer1.writerow(node.get('value'))
def create_csv1():
with open('output1.csv', 'w') as f1:
writer1 = csv.writer(f1)
for i in range(1, 100):
z = zipfile.ZipFile('xml' + str(i) + '.zip')
# z.namelist() contains more than 100 xml files
for finfo in z.namelist():
data = z.read(finfo)
parse_xml_for_csv1(data, writer1)
def create_csv2():
with open('output2.csv', 'w') as f2:
writer2 = csv.writer(f2)
for i in range(1, 100):
...
if __name__ == "__main__":
p1 = Process(target=create_csv1)
p2 = Process(target=create_csv2)
p1.start()
p2.start()
p1.join()
p2.join()
请告诉我,如何优化我的代码?让代码更快?
您只需要定义一个带参数的方法。将100个.zip文件的处理拆分到给定数量的线程或进程中。您添加的进程越多,使用的CPU就越多,也许您可以使用2个以上的进程,它会更快(在某些时候可能会因为磁盘I/O而出现瓶颈)
在下面的代码中,我可以更改为4或10个进程,不需要复制/粘贴代码。它可以处理不同的zip文件。
你的代码并行处理相同的100个文件两次:它甚至比没有多处理还要慢!
def create_csv(start_index,step):
with open('output{0}.csv'.format(start_index//step), 'w') as f1:
writer1 = csv.writer(f1)
for i in range(start_index, start_index+step):
z = zipfile.ZipFile('xml' + str(i) + '.zip')
# z.namelist() contains more than 100 xml files
for finfo in z.namelist():
data = z.read(finfo)
parse_xml_for_csv1(data, writer1)
if __name__ == "__main__":
nb_files = 100
nb_processes = 2 # raise to 4 or 8 depending on your machine
step = nb_files//nb_processes
lp = []
for start_index in range(1,nb_files,step):
p = Process(target=create_csv,args=[start_index,step])
p.start()
lp.append(p)
for p in lp:
p.join()