根据另一列中的数组更新 Pyspark DF 列



这是我的pyspark数据帧模式:

root
 |-- user: string (nullable = true)
 |-- table: string (nullable = true)
 |-- changeDate: string (nullable = true)
 |-- fieldList: string (nullable = true)
 |-- id: string (nullable = true)
 |-- value2: integer (nullable = false)
 |-- value: double (nullable = false)
 |-- name: string (nullable = false)
 |-- temp: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- num_cols_changed: integer (nullable = true)

数据帧中的数据:

+--------+-----+--------------------+--------------------+------+------+-----+----+--------------------+----------------+
|    user|table|          changeDate|           fieldList|     id|value2|value|name|                temp|num_cols_changed|
+--------+-----+--------------------+--------------------+------+------+-----+----+--------------------+----------------+
| user11 | TAB1| 2016-01-24 19:10...|         value2 = 100|555555|   200|  0.5| old|      [value2 = 100]|               1|
| user01 | TAB1| 2015-12-31 13:12...|value = 0.34,name=new|  1111|   200|  0.5| old|[value = 0.34,  n...|               2|
+--------+-----+--------------------+--------------------+------+------+-----+----+--------------------+----------------+
我想

读取临时列中的数组,并根据其中的值,我想更改数据框中的列。例如,第一行只有一列被更改,即 value 2 ,所以我想用新值 100 更新列df.value2。同样,在下一行中,更改了 2 列,因此我需要提取值和名称及其值,并更新数据框中的相应列。所以输出应该是这样的:

+--------+-----+--------------------+------+------+-----+----+
|    user|table|          changeDate|    id|value2|value|name|
+--------+-----+--------------------+------+------+-----+----+
| user11 | TAB1| 2016-01-24 19:10...|555555|   100|  0.5| old|
| user01 | TAB1| 2015-12-31 13:12...|  1111|   200| 0.34| new|
+--------+-----+--------------------+------+------+-----+----+

我想记住程序的性能,因此专注于仅使用数据帧的方法,但是如果没有选择,我也可以选择rdd路线。基本上,我不知道如何在一行中处理多个值然后进行比较。我知道我可以使用 column in df.columns 比较列名,但是使用数组对每一行执行此操作会让我感到困惑。任何帮助或新想法不胜感激。

以下是我如何使用explode解决此问题:

df = df.withColumn('temp', split(df.fieldList, ','))
df = df.withColumn('cols', explode(df.temp))
df = df.withColumn('col_value', split(df.cols, '='))
df = df.withColumn('deltaCol', df.col_value[0])
       .withColumn('deltaValue',df.col_value[1])

上述的最终输出(删除不相关的列后)导致:

+------+-----+--------+--------------------+--------+----------+
|    id|table|    user|          changeDate|deltaCol|deltaValue|
+------+-----+--------+--------------------+--------+----------+
|555555| TAB2| user11 | 2016-01-24 19:10...| value2 |       100|
|  1111| TAB1| user01 | 2015-12-31 13:12...|  value |      0.34|
|  1111| TAB1| user01 | 2015-12-31 13:12...|   name | 'newName'|
+------+-----+--------+--------------------+--------+----------+

在此之后,我将其注册为表并执行SQL操作以透视数据:

>>> res = sqlContext.sql("select id, table, user, changeDate, max(value2) as value2, max(value) as value, max(name) as name 
... from (select id, table, user, changeDate, case when trim(deltaCol) == 'value2' then deltaValue else Null end value2,
... case when trim(deltaCol) == 'value' then deltaValue else Null end value,
... case when trim(deltaCol) == 'name' then deltaValue else Null end name from delta) t group by id, table, user, changeDate")

其结果是:

+------+-----+--------+--------------------+------+-----+----------+
|    id|table|    user|          changeDate|value2|value|      name|
+------+-----+--------+--------------------+------+-----+----------+
|555555| TAB2| user11 | 2016-01-24 19:10...|   100| null|      null|
|  1111| TAB1| user01 | 2015-12-31 13:12...|  null| 0.34| 'newName'|
+------+-----+--------+--------------------+------+-----+----------+

为了将此代码用于不同的表,我使用主 DF(我的最终目标表)的列来准备一串列:

>>> string = [(", max(" + c + ") as " + c) for c in masterDF.columns]
>>> string = "".join(string)
>>> string
', max(id) as id, max(value) as value, max(name) as name, max(value2) as value2'

相关内容

  • 没有找到相关文章

最新更新