我正在用Keras构建一个卷积神经网络,并希望在最后一个完全连接层之前添加一个具有数据标准差的单个节点。
下面是重现错误的最小代码:from keras.layers import merge, Input, Dense
from keras.layers import Convolution1D, Flatten
from keras import backend as K
input_img = Input(shape=(64, 4))
x = Convolution1D(48, 3, activation='relu', init='he_normal')(input_img)
x = Flatten()(x)
std = K.std(input_img, axis=1)
x = merge([x, std], mode='concat', concat_axis=1)
output = Dense(100, activation='softmax', init='he_normal')(x)
这导致以下TypeError
:
-----------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-117-c1289ebe610e> in <module>()
6 x = merge([x, std], mode='concat', concat_axis=1)
7
----> 8 output = Dense(100, activation='softmax', init='he_normal')(x)
/home/ubuntu/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.pyc in __call__(self, x, mask)
486 '`layer.build(batch_input_shape)`')
487 if len(input_shapes) == 1:
--> 488 self.build(input_shapes[0])
489 else:
490 self.build(input_shapes)
/home/ubuntu/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/layers/core.pyc in build(self, input_shape)
701
702 self.W = self.init((input_dim, self.output_dim),
--> 703 name='{}_W'.format(self.name))
704 if self.bias:
705 self.b = K.zeros((self.output_dim,),
/home/ubuntu/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/initializations.pyc in he_normal(shape, name, dim_ordering)
64 '''
65 fan_in, fan_out = get_fans(shape, dim_ordering=dim_ordering)
---> 66 s = np.sqrt(2. / fan_in)
67 return normal(shape, s, name=name)
68
TypeError: unsupported operand type(s) for /: 'float' and 'NoneType'
知道为什么吗?
std
不是Keras层,因此它不满足层输入/输出形状接口。解决方案是使用Lambda
层包裹K.std
:
from keras.layers import merge, Input, Dense, Lambda
from keras.layers import Convolution1D, Flatten
from keras import backend as K
input_img = Input(shape=(64, 4))
x = Convolution1D(48, 3, activation='relu', init='he_normal')(input_img)
x = Flatten()(x)
std = Lambda(lambda x: K.std(x, axis=1))(input_img)
x = merge([x, std], mode='concat', concat_axis=1)
output = Dense(100, activation='softmax', init='he_normal')(x)