角度的双线性插值



我有一个方向数据的2d数组。我需要在更高分辨率的网格上进行插值,然而,像scipy interp2d等现成的函数并没有考虑到0和360之间的不连续性。

我有为4点的单个网格执行此操作的代码(感谢如何在Python中执行双线性插值和旋转插值),但我希望它能同时接受大数据集,就像interp2d函数一样。我如何才能以一种不只是循环所有数据的方式将其合并到下面的代码中?

谢谢!

def shortest_angle(beg,end,amount):
shortest_angle=((((end - beg) % 360) + 540) % 360) - 180
return shortest_angle*amount    
def bilinear_interpolation_rotation(x, y, points):
'''Interpolate (x,y) from values associated with four points.
The four points are a list of four triplets:  (x, y, value).
The four points can be in any order.  They should form a rectangle.
'''
points = sorted(points)               # order points by x, then by y
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points
if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
raise ValueError('points do not form a rectangle')
if not x1 <= x <= x2 or not y1 <= y <= y2:
raise ValueError('(x, y) not within the rectangle')
# interpolate over the x value at each y point
fxy1 = q11 + shortest_angle(q11,q21,((x-x1)/(x2-x1)))
fxy2 = q12 + shortest_angle(q12,q22,((x-x1)/(x2-x1)))    
# interpolate over the y values 
fxy = fxy1 + shortest_angle(fxy1,fxy2,((y-y1)/(y2-y1)))
return fxy

我将为这个例子重用一些个人PointPoint3D简化类:

Point

class Point:
#Constructors
def __init__(self, x, y):
self.x = x
self.y = y
# Properties
@property
def x(self):
return self._x
@x.setter
def x(self, value):
self._x = float(value)
@property
def y(self):
return self._y
@y.setter
def y(self, value):
self._y = float(value)
# Printing magic methods
def __repr__(self):
return "({p.x},{p.y})".format(p=self)
# Comparison magic methods
def __is_compatible(self, other):
return hasattr(other, 'x') and hasattr(other, 'y')
def __eq__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x == other.x) and (self.y == other.y)
def __ne__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x != other.x) or (self.y != other.y)
def __lt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) < (other.x, other.y)
def __le__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) <= (other.x, other.y)
def __gt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) > (other.x, other.y)
def __ge__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y) >= (other.x, other.y) 

它表示一个二维点。它有一个简单的构造函数,xy属性,确保它们始终存储floats,将字符串表示为(x,y)的神奇方法,以及使它们可排序的比较(按x排序,然后按y排序)。我的原始类具有附加功能,如加法和减法(向量行为)魔术方法,但在本例中不需要它们。

Point3D

class Point3D(Point):
# Constructors
def __init__(self, x, y, z):
super().__init__(x, y)
self.z = z
@classmethod
def from2D(cls, p, z):
return cls(p.x, p.y, z)
# Properties
@property
def z(self):
return self._z
@z.setter
def z(self, value):
self._z = (value + 180.0) % 360 - 180
# Printing magic methods
def __repr__(self):
return "({p.x},{p.y},{p.z})".format(p=self)
# Comparison magic methods
def __is_compatible(self, other):
return hasattr(other, 'x') and hasattr(other, 'y') and hasattr(other, 'z')
def __eq__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x == other.x) and (self.y == other.y) and (self.z == other.z)
def __ne__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x != other.x) or (self.y != other.y) or (self.z != other.z)
def __lt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) < (other.x, other.y, other.z)
def __le__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) <= (other.x, other.y, other.z)
def __gt__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) > (other.x, other.y, other.z)
def __ge__(self, other):
if not self.__is_compatible(other):
return NotImplemented
return (self.x, self.y, self.z) >= (other.x, other.y, other.z)

Point相同,但适用于3D点。它还包括一个额外的构造函数类方法,该方法将Point及其z值作为参数。

线性插值

def linear_interpolation(x, *points, extrapolate=False):
# Check there are a minimum of two points
if len(points) < 2:
raise ValueError("Not enought points given for interpolation.")
# Sort the points
points = sorted(points)
# Check that x is the valid interpolation interval
if not extrapolate and (x < points[0].x or x > points[-1].x):
raise ValueError("{} is not in the interpolation interval.".format(x))
# Determine which are the two surrounding interpolation points
if x < points[0].x:
i = 0
elif x > points[-1].x:
i = len(points)-2
else:
i = 0
while points[i+1].x < x:
i += 1
p1, p2 = points[i:i+2]
# Interpolate
return Point(x, p1.y + (p2.y-p1.y) * (x-p1.x) / (p2.x-p1.x))

它采用第一个位置参数,该参数将确定我们要计算其y值的x,以及我们要插值的无限数量的Point实例。关键字自变量(extrapolate)允许启用外推法。返回一个Point实例,其中包含请求的x和计算的y值。

双线性插值

我提供了两种替代方案,它们都与前面的插值函数具有相似的签名。我们要计算其z值的Point,打开外推法并返回具有请求和计算数据的Point3D实例的关键字自变量(extrapolate)。这两种方法之间的区别在于如何提供将用于插值的值:

方法1

第一种方法采用两层深度嵌套的CCD_ 19。第一级关键字表示x值,第二级关键字表示y值,而第二级值表示z值。

def bilinear_interpolation(p, points, extrapolate=False):
x_values = sorted(points.keys())
# Check there are a minimum of two x values
if len(x_values) < 2:
raise ValueError("Not enought points given for interpolation.")
y_values = set()
for value in points.values():
y_values.update(value.keys())
y_values = sorted(y_values)
# Check there are a minimum of two y values
if len(y_values) < 2:
raise ValueError("Not enought points given for interpolation.")
# Check that p is in the valid interval
if not extrapolate and (p.x < x_values[0] or p.x > x_values[-1] or p.y < y_values[0] or p.y > y_values[-1]):
raise ValueError("{} is not in the interpolation interval.".format(p))
# Determine which are the four surrounding interpolation points
if p.x < x_values[0]:
i = 0
elif p.x > x_values[-1]:
i = len(x_values) - 2
else:
i = 0
while x_values[i+1] < p.x:
i += 1
if p.y < y_values[0]:
j = 0
elif p.y > y_values[-1]:
j = len(y_values) - 2
else:
j = 0
while y_values[j+1] < p.y:
j += 1
surroundings = [
Point(x_values[i  ], y_values[j  ]),
Point(x_values[i  ], y_values[j+1]),
Point(x_values[i+1], y_values[j  ]),
Point(x_values[i+1], y_values[j+1]),
]
for i, surrounding in enumerate(surroundings):
try:
surroundings[i] = Point3D.from2D(surrounding, points[surrounding.x][surrounding.y])
except KeyError:
raise ValueError("{} is missing in the interpolation grid.".format(surrounding))
p1, p2, p3, p4 = surroundings
# Interpolate
p12 = Point3D(p1.x, p.y, linear_interpolation(p.y, Point(p1.y,p1.z), Point(p2.y,p2.z), extrapolate=True).y)
p34 = Point3D(p3.x, p.y, linear_interpolation(p.y, Point(p3.y,p3.z), Point(p4.y,p4.z), extrapolate=True).y)
return Point3D(p.x, p12.y, linear_interpolation(p.x, Point(p12.x,p12.z), Point(p34.x,p34.z), extrapolate=True).y)

print(bilinear_interpolation(Point(2,3), {1: {2: 5, 4: 6}, 3: {2: 3, 4: 9}}))

方法2

第二种方法采用无限数量的Point3D实例。

def bilinear_interpolation(p, *points, extrapolate=False):
# Check there are a minimum of four points
if len(points) < 4:
raise ValueError("Not enought points given for interpolation.")
# Sort the points into a grid
x_values = set()
y_values = set()
for point in sorted(points):
x_values.add(point.x)
y_values.add(point.y)
x_values = sorted(x_values)
y_values = sorted(y_values)
# Check that p is in the valid interval
if not extrapolate and (p.x < x_values[0] or p.x > x_values[-1] or p.y < y_values[0] or p.y > y_values[-1]):
raise ValueError("{} is not in the interpolation interval.".format(p))
# Determine which are the four surrounding interpolation points
if p.x < x_values[0]:
i = 0
elif p.x > x_values[-1]:
i = len(x_values) - 2
else:
i = 0
while x_values[i+1] < p.x:
i += 1
if p.y < y_values[0]:
j = 0
elif p.y > y_values[-1]:
j = len(y_values) - 2
else:
j = 0
while y_values[j+1] < p.y:
j += 1
surroundings = [
Point(x_values[i  ], y_values[j  ]),
Point(x_values[i  ], y_values[j+1]),
Point(x_values[i+1], y_values[j  ]),
Point(x_values[i+1], y_values[j+1]),
]
for point in points:
for i, surrounding in enumerate(surroundings):
if point.x == surrounding.x and point.y == surrounding.y:
surroundings[i] = point
for surrounding in surroundings:
if not isinstance(surrounding, Point3D):
raise ValueError("{} is missing in the interpolation grid.".format(surrounding))
p1, p2, p3, p4 = surroundings
# Interpolate
p12 = Point3D(p1.x, p.y, linear_interpolation(p.y, Point(p1.y,p1.z), Point(p2.y,p2.z), extrapolate=True).y)
p34 = Point3D(p3.x, p.y, linear_interpolation(p.y, Point(p3.y,p3.z), Point(p4.y,p4.z), extrapolate=True).y)
return Point3D(p.x, p12.y, linear_interpolation(p.x, Point(p12.x,p12.z), Point(p34.x,p34.z), extrapolate=True).y)

print(bilinear_interpolation(Point(2,3), Point3D(3,2,3), Point3D(1,4,6), Point3D(3,4,9), Point3D(1,2,5)))

您可以从这两种方法中看到,它们使用先前定义的linear_interpoaltion函数,并且它们总是将extrapolation设置为True,因为如果是False并且请求的点在所提供的间隔之外,则它们已经引发了异常。

相关内容

  • 没有找到相关文章

最新更新