r语言 - 如何将变量转化为定量



我有一个数据矩阵(900列和5000行),我想做一个pca .

矩阵在excel中看起来很好(意味着所有的值都是定量的),但在我在R中阅读我的文件并尝试运行pca代码后,我得到一个错误说"以下变量不是定量的",我得到一个非定量变量列表。

所以一般来说,有些变量是定量的,有些不是。请看下面的例子。当我检查变量1时,它是正确的和定量的。(文件中随机有一些变量是定量的)当我检查变量2时,它是不正确的和非定量的。(像这样的随机变量在文件中是非定量的)

> data$variable1[1:5]
[1] -0.7617504 -0.9740939 -0.5089303 -0.1032487 -0.1245882
> data$variable2[1:5]
[1] -0.183546332959017 -0.179283451229594 -0.191165669598284 -0.187060515423038
[5] -0.184409474669824
731 Levels: -0.001841783473108 -0.001855956210119 ... -1,97E+05

所以我的问题是,我怎样才能把所有的非定量变量变成定量的??

使文件变短并没有帮助,因为这些值本身就具有定量性。我不知道发生了什么事。这是我原始文件的链接<- https://docs.google.com/file/d/0BzP-YLnUNCdwakc4dnhYdEpudjQ/edit

我也试过下面给出的答案,但它仍然没有帮助。

让我展示一下我到底做了什么,

> data <- read.delim("file.txt", header=T)
> res.pca = PCA(data, quali.sup=1, graph=T)
Error in PCA(data, quali.sup = 1, graph = T) :
The following variables are not quantitative:  batch
The following variables are not quantitative:  target79
The following variables are not quantitative:  target148
The following variables are not quantitative:  target151
The following variables are not quantitative:  target217
The following variables are not quantitative:  target266
The following variables are not quantitative:  target515
The following variables are not quantitative:  target530
The following variables are not quantitative:  target587
The following variables are not quantitative:  target620
The following variables are not quantitative:  target730
The following variables are not quantitative:  target739
The following variables are not quantitative:  target801
The following variables are not quantitative:  target803
The following variables are not quantitative:  target809
The following variables are not quantitative:  target819
The following variables are not quantitative:  target868
The following variables a
In addition: There were 50 or more warnings (use warnings() to see the first 50)

默认情况下,R将字符串强制转换为因子。这可能导致意想不到的行为。使用:

关闭此默认选项:
      read.csv(x, stringsAsFactors=F)

或者,您可以使用

强制因子为数字
      newVar<-as.numeric(oldVar)

R将变量视为因素,正如Arun所提到的。因此,它生成一个data.frame(实际上是一个列表)。有许多方法可以解决这个问题,其中一种方法是按照以下方式将其转换为数据矩阵:

matrix <- as.numeric(as.matrix(data))
dim(matrix) <- dim(data)

现在你可以在矩阵上运行你的PCA了。

编辑:

扩展一下这个例子,查理的建议的第二部分是行不通的。复制下面的会话,看看它是如何工作的;
d <- data.frame(
 a = factor(runif(2000)),
 b = factor(runif(2000)),
 c = factor(runif(2000)))
as.numeric(d) #does not work on a list (data frame is a list)
as.numeric(d$a) # does work, because d$a is a vecor, but this is not what you are 
# after. R converts the factor levels to numeric instead of the actual value.
(m <- as.numeric(as.matrix(d))) # this does the rigth thing
dim(m)                        # but m loses the dimensions and is now a vector
dim(m) <- dim(d)              # assign the dimensions of d to m
svd(m)                        # you can do the PCA function of your liking on m

as.numeric(as.character(data$variable2[1:5])),先用as.character得到因子变量标签的字符串表示,再用as.numeric进行转换

相关内容

  • 没有找到相关文章

最新更新