我使用以下代码将rdd转换为数据帧:
time_df = time_rdd.toDF(['my_time'])
并得到以下错误:
TypeErrorTraceback (most recent call last)
<ipython-input-40-ab9e3025f679> in <module>()
----> 1 time_df = time_rdd.toDF(['my_time'])
/usr/local/spark-latest/python/pyspark/sql/session.py in toDF(self, schema, sampleRatio)
55 [Row(name=u'Alice', age=1)]
56 """
---> 57 return sparkSession.createDataFrame(self, schema, sampleRatio)
58
59 RDD.toDF = toDF
/usr/local/spark-latest/python/pyspark/sql/session.py in createDataFrame(self, data, schema, samplingRatio)
518
519 if isinstance(data, RDD):
--> 520 rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
521 else:
522 rdd, schema = self._createFromLocal(map(prepare, data), schema)
/usr/local/spark-latest/python/pyspark/sql/session.py in _createFromRDD(self, rdd, schema, samplingRatio)
358 """
359 if schema is None or isinstance(schema, (list, tuple)):
--> 360 struct = self._inferSchema(rdd, samplingRatio)
361 converter = _create_converter(struct)
362 rdd = rdd.map(converter)
/usr/local/spark-latest/python/pyspark/sql/session.py in _inferSchema(self, rdd, samplingRatio)
338
339 if samplingRatio is None:
--> 340 schema = _infer_schema(first)
341 if _has_nulltype(schema):
342 for row in rdd.take(100)[1:]:
/usr/local/spark-latest/python/pyspark/sql/types.py in _infer_schema(row)
987
988 else:
--> 989 raise TypeError("Can not infer schema for type: %s" % type(row))
990
991 fields = [StructField(k, _infer_type(v), True) for k, v in items]
TypeError: Can not infer schema for type: <type 'float'>
有谁知道我错过了什么吗?谢谢! 应该将float转换为元组,如
time_rdd.map(lambda x: (x, )).toDF(['my_time'])
检查time_rdd是否为RDD
你得到了什么?
>>>type(time_rdd)
>>>dir(time_rdd)