我有一个不同位置的几百个经纬度坐标对的列表。我的目标是使用 R 估计从"家"位置到每个坐标对的行驶时间。
我在 R 中使用googleway
包取得了一些成功,但(可以预见)在远离道路的位置遇到了问题,例如,如果坐标是山顶。在这些情况下,我想估计到每个有问题的坐标对最近道路的行驶时间。
为了说明这一点,假设我的家庭位置是;
home <- "Edinburgh, UK"
。以及我想查找驾驶时间的位置的示例数据框可能是;
location <- c("place_a", "place_b", "place_c")
latitude <- c("56.87034", "57.69380", "57.36243")
longitude <- c("-4.199001", "-5.128715", "-5.104728")
df <- data.frame(location, latitude, longitude)
我可以使用类似的东西获得home
和place_a
之间的距离/持续时间等,以及home
和place_b
之间的距离/持续时间等;
(注。您需要自己的谷歌地图 api 密钥来复制此部分...
library(googleway)
api_key <- [insert your Google Maps api key here!]
results <- google_distance(origins = home,
destinations = list(c("56.87034,-4.199001"),
("57.69380,-5.128715")),
mode = "driving",
key = api_key,
units = "imperial")
我使用以下方法获得所需的所有数据:
results$rows[[1]]
但是,当尝试相同的坐标时,我们遇到了麻烦place_c
,返回ZERO_RESULTS
;
results2 <- google_distance(origins = home,
destinations = ("57.36243,-5.104728"),
mode = "driving",
key = api_key,
units = "imperial")
在这里,我认为问题是坐标是半山腰的,所以在这种情况下,我想找到离坐标最近的道路。我希望对googleway
的nearest_road
功能有一些运气,但似乎无法让它工作,例如这样的东西不起作用;
df_points <- read.table(text = "lat lon
57.36243 -5.104728", header = T)
nearest_road <- google_nearestRoads(df_points, key = api_key)
谁能建议这里的问题是什么?还是完全提出更好的解决方案?!
非常感谢。
我正在一个即将在 github 上提供的软件包中解决这个问题(称为空间加热器)。同时:
我会从geofabrik下载您正在使用的国家/地区的开放街道地图形状文件。例如尼日利亚:http://download.geofabrik.de/africa/nigeria.html
根据猴子网的建议编辑(谢谢!
library(sp)
library(rgdal)
library(raster)
library(googleway)
library(geosphere)
library(foreach)
###I did Nigeria because I have it in my file downloaded, you would use UK###
roadshp <- readOGR(dsn="nigeria-latest-free.shp",
layer="gis.osm_roads_free_1")
#Isolate primary roads (or secondary and tertiary) if you wish#
roads <- roadshp[roadshp$fclass %in% c("primary", "secondary", "tertiary"),]
#Use SpatialPoints for your gps coords
location <- c("place_a", "place_b", "place_c")
latitude <- c(8.641, 10.892, 11.797)
longitude <- c(6.0046, 11.146, 5.477)
df <- data.frame(location, latitude, longitude)
coordinates(df)=~longitude+latitude
sp1 <- SpatialPoints(df)
proj4string(sp1)=CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0")
clodist <- dist2Line(sp1, roads)
df <- as.data.frame(df)
df$clodist <- clodist[,c("distance")]
df$lat <- clodist[,c("lat")]
df$lon <- clodist[,c("lon")]
iters <- nrow(df)
origin <- as.character("9.056, 7.497")
gc1 <- data.frame(round(df[,c("lat")],3), round(df[,c("lon")],3))
colnames(gc1) <- c("lat","lon")
df$lat <- as.character(gc1$lat)
df$lon <- as.character(gc1$lon)
gt2 <- paste(df[,c("lat")], df[,c("lon")], sep=",")
results <- google_distance(origins =origin, destinations= gt2,
mode="driving",
key="Your API Key Here")
results <-unlist(results)
results <- as.data.frame(results)
ttt <- head(results,-1)
ttt <- ttt[-c(iters+1), ]
m1 <- matrix(ttt, ncol=iters, byrow=TRUE)
distance <- as.data.frame(m1)
rownames(distance) <- c("Address", "DistanceKM",
"DistanceM","TimeTextLow","TimeSecondsLow","TimeTextHigh","TimeSecondsHigh",
"Status")