将 PySpark 密集列向量转换为行



我有一个有 3 列的数据框,每个条目都是相同长度的密集向量。 如何融化矢量条目?

当前数据框:

专栏1 | 列2 |

[1.0,2.0,3.0]|[10.0,4.0,3.0]

[5.0,4.0,3.0]|[11.0,26.0,3.0]

[9.0,8.0,7.0]|[13.0,7.0,3.0]

预期:

列 1|列 2

1.0 . 10.0

2.0 . 4.0

3.0 . 3.0

5.0 . 11.0

4.0 . 26.0

3.0 . 3.0

9.0 . 13.0

步骤 1:让我们创建初始数据帧:

myValues = [([1.0,2.0,3.0],[10.0,4.0,3.0]),([5.0,4.0,3.0],[11.0,26.0,3.0]),([9.0,8.0,7.0],[13.0,7.0,3.0])]
df = sqlContext.createDataFrame(myValues,['column1','column2'])
df.show()
+---------------+-----------------+
|        column1|          column2|
+---------------+-----------------+
|[1.0, 2.0, 3.0]| [10.0, 4.0, 3.0]|
|[5.0, 4.0, 3.0]|[11.0, 26.0, 3.0]|
|[9.0, 8.0, 7.0]| [13.0, 7.0, 3.0]|
+---------------+-----------------+

步骤2:现在,explode两列,但在我们zip数组之后。在这里,我们事先知道list/array的长度是 3。

from pyspark.sql.functions import array, struct
tmp = explode(array(*[
struct(col("column1").getItem(i).alias("column1"), col("column2").getItem(i).alias("column2"))
for i in range(3)
]))
df=(df.withColumn("tmp", tmp).select(col("tmp").getItem("column1").alias('column1'), col("tmp").getItem("column2").alias('column2')))
df.show()
+-------+-------+
|column1|column2|
+-------+-------+
|    1.0|   10.0|
|    2.0|    4.0|
|    3.0|    3.0|
|    5.0|   11.0|
|    4.0|   26.0|
|    3.0|    3.0|
|    9.0|   13.0|
|    8.0|    7.0|
|    7.0|    3.0|
+-------+-------+

相关内容

  • 没有找到相关文章

最新更新