Flink:用卡夫卡流连接文件



我有一个问题,我真的想不通。 所以我有一个 kafka 流,其中包含一些这样的数据:

{"adId":"9001", "eventAction":"start", "eventType":"track", "eventValue":"", "timestamp":"1498118549550"}

我想用另一个值"bookingId"替换"adId"。 这个值位于 csv 文件中,但我真的不知道如何让它工作。

这是我的映射csv文件:

9001;8
9002;10

所以我的输出理想情况下是这样的

{"bookingId":"8", "eventAction":"start", "eventType":"track", "eventValue":"", "timestamp":"1498118549550"}

此文件可以每小时至少刷新一次,因此它应该获取对其的更改。

我目前有这段代码对我不起作用:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(30000); // create a checkpoint every 30 seconds
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
DataStream<String> adToBookingMapping = env.readTextFile(parameters.get("adToBookingMapping"));
DataStream<Tuple2<Integer,Integer>> input = adToBookingMapping.flatMap(new Tokenizer());
//Kafka Consumer
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", parameters.get("bootstrap.servers"));
properties.setProperty("group.id", parameters.get("group.id"));
FlinkKafkaConsumer010<ObjectNode> consumer = new FlinkKafkaConsumer010<>(parameters.get("inbound_topic"), new JSONDeserializationSchema(), properties);
consumer.setStartFromGroupOffsets();
consumer.setCommitOffsetsOnCheckpoints(true);
DataStream<ObjectNode> logs = env.addSource(consumer);
DataStream<Tuple4<Integer,String,Integer,Float>> parsed = logs.flatMap(new Parser());
// output -> bookingId, action, impressions, sum
DataStream<Tuple4<Integer, String,Integer,Float>> joined = runWindowJoin(parsed, input, 3);

public static DataStream<Tuple4<Integer, String, Integer, Float>> runWindowJoin(DataStream<Tuple4<Integer, String, Integer, Float>> parsed,
DataStream<Tuple2<Integer, Integer>> input,long windowSize) {
return parsed.join(input)
.where(new ParsedKey())
.equalTo(new InputKey())
.window(TumblingProcessingTimeWindows.of(Time.of(windowSize, TimeUnit.SECONDS)))
//.window(TumblingEventTimeWindows.of(Time.milliseconds(30000)))
.apply(new JoinFunction<Tuple4<Integer, String, Integer, Float>, Tuple2<Integer, Integer>, Tuple4<Integer, String, Integer, Float>>() {
private static final long serialVersionUID = 4874139139788915879L;
@Override
public Tuple4<Integer, String, Integer, Float> join(
Tuple4<Integer, String, Integer, Float> first,
Tuple2<Integer, Integer> second) {
return new Tuple4<Integer, String, Integer, Float>(second.f1, first.f1, first.f2, first.f3);
}
});
}

代码只运行一次,然后停止,因此它不会使用 csv 文件转换 kafka 中的新条目。关于如何使用 csv 文件中的最新值处理来自 Kafka 的流的任何想法?

亲切问候

暗黑主

您的目标似乎是将流数据与缓慢变化的目录(即侧输入(连接起来。 我认为join操作在这里没有用,因为它不会跨窗口存储目录条目。 此外,文本文件是一个有界输入,其行读取一次。

请考虑使用connect创建连接的流,并将目录数据存储为托管状态以执行查找。 运算符的并行度需要为 1。

您可以通过研究"侧面输入",查看人们今天使用的解决方案来找到更好的解决方案。 参见 FLIP-17 和 Dean Wampler 在 Flink Forward 上的演讲。

相关内容

  • 没有找到相关文章

最新更新