Spark Shell - __spark_libs__.zip does not exist



我是新手Spark,我正忙于使用启用HA的Spark群集。

启动火花壳进行测试时通过:bash spark-shell --master yarn --deploy-mode client

我会收到以下错误(请参阅完整错误bellow):file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip does not exist

该应用程序在纱线Web应用程序上被标记为失败,并且没有启动容器。

启动外壳时通过:spark-shell --master local打开没有错误的打开。

我注意到文件仅写入创建外壳的节点上的TMP文件夹。

任何帮助将不胜感激。让我知道是否需要更多信息。

环境变量:

hadoop_conf_dir =/opt/hadoop-2.7.3/etc/hadoop/p>

yarn_conf_dir =/opt/hadoop-2.7.3/etc/hadoop/p>

spark_home =/opt/spark-2.0.2 bin-hadoop2.7/

完整错误消息:

16/11/30 21:08:47 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 
16/11/30 21:08:49 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. 
16/11/30 21:09:03 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_e14_1480532715390_0001_02_000003 on host: slave2. Exit status: -1000. Diagnostics: File file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip does not exist 
java.io.FileNotFoundException: File file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip
does not exist
        at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
        at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
        at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
        at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
        at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
        at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
        at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
        at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:422)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
        at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
        at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
16/11/30 22:29:28 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED! 16/11/30 22:29:28 ERROR spark.SparkContext: Error initializing SparkContext. java.lang.IllegalStateException: Spark context stopped while waiting for backend
        at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:584)
        at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:546)
        at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2258)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823)
        at scala.Option.getOrElse(Option.scala:121)
        at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823)
        at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
        at $line3.$read$$iw$$iw.<init>(<console>:15)
        at $line3.$read$$iw.<init>(<console>:31)
        at $line3.$read.<init>(<console>:33)
        at $line3.$read$.<init>(<console>:37)
        at $line3.$read$.<clinit>(<console>)
        at $line3.$eval$.$print$lzycompute(<console>:7)
        at $line3.$eval$.$print(<console>:6)
        at $line3.$eval.$print(<console>)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
        at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
        at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
        at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
        at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
        at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
        at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
        at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
        at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
        at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
        at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
        at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:94)
        at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
        at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
        at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
        at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
        at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
        at org.apache.spark.repl.Main$.doMain(Main.scala:68)
        at org.apache.spark.repl.Main$.main(Main.scala:51)
        at org.apache.spark.repl.Main.main(Main.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

YARN-SITE.xml

<configuration>
  <property>
    <name>yarn.resourcemanager.connect.retry-interval.ms</name>
    <value>2000</value>
  </property>
  <property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>yarn-cluster</value>
  </property>
  <property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
  </property>
  <property>
    <name>yarn.resourcemanager.ha.id</name>
    <value>rm1</value>
  </property>
  <property>
    <name>yarn.resourcemanager.scheduler.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
  </property>
  <property>
    <name>yarn.resourcemanager.recovery.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.resourcemanager.store.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
  </property>
  <property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>master:2181,slave1:2181,slave2:2181</value>
  </property>
  <property>
    <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
    <value>5000</value>
  </property>
  <property>
    <name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.resourcemanager.address.rm1</name>
    <value>master:23140</value>
  </property>
  <property>
    <name>yarn.resourcemanager.scheduler.address.rm1</name>
    <value>master:23130</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.https.address.rm1</name>
    <value>master:23189</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>master:23188</value>
  </property>
  <property>
    <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
    <value>master:23125</value>
  </property>
  <property>
    <name>yarn.resourcemanager.admin.address.rm1</name>
    <value>master:23141</value>
  </property>
  <property>
    <name>yarn.resourcemanager.address.rm2</name>
    <value>slave1:23140</value>
  </property>
  <property>
    <name>yarn.resourcemanager.scheduler.address.rm2</name>
    <value>slave1:23130</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.https.address.rm2</name>
    <value>slave1:23189</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>slave1:23188</value>
  </property>
  <property>
    <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
    <value>slave1:23125</value>
  </property>
  <property>
    <name>yarn.resourcemanager.admin.address.rm2</name>
    <value>slave1:23141</value>
  </property>
  <property>
    <description>Address where the localizer IPC is.</description>
    <name>yarn.nodemanager.localizer.address</name>
    <value>0.0.0.0:23344</value>
  </property>
  <property>
    <description>NM Webapp address.</description>
    <name>yarn.nodemanager.webapp.address</name>
    <value>0.0.0.0:23999</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarn.nodemanager.local-dirs</name>
    <value>/tmp/pseudo-dist/yarn/local</value>
  </property>
  <property>
    <name>yarn.nodemanager.log-dirs</name>
    <value>/tmp/pseudo-dist/yarn/log</value>
  </property>
  <property>
    <name>mapreduce.shuffle.port</name>
    <value>23080</value>
  </property>
  <property>
    <name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
    <value>true</value>
  </property>
</configuration>

此错误是由于core-site.xml文件中的config造成的。

请注意,要查找此文件,您的HADOOP_CONF_DIR ENV变量 必须设置。

在我的情况下,我将HADOOP_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop/添加到 ./conf/spark-env.sh

请参阅:在纱线cluster java.io.filenotfoundexception上运行的Spark作业:文件未退出,尽管文件退出了主节点上的文件

core-site.xml

<configuration>
    <property>
        <name>fs.default.name</name>
        <value>hdfs://master:9000</value>
    </property> 
</configuration>

如果此端点无法实现,或者Spark检测到文件系统与当前系统相同,则LIB文件将不会分配给群集中的其他节点,从而导致上述错误。

在我的情况下,我所使用的节点无法在指定的主机上达到9000的端口。

调试

将日志级别调整为信息。您可以通过:

来执行此操作
  1. ./conf/log4j.properties.template复制到./conf/log4j.properties

  2. 在文件集log4j.logger.org.apache.spark.repl.Main = INFO

正常启动火花壳。如果您的问题与我的问题相同,则应看到一条信息消息,例如:INFO Client: Source and destination file systems are the same. Not copying file:/tmp/spark-c1a6cdcd-d348-4253-8755-5086a8931e75/__spark_libs__1391186608525933727.zip

这应该引起您的问题,因为它启动了由于丢失的文件而引起的火车反应。

您必须将配置设置为Spark Session的Master(" local [*])。我已删除并起作用。

我没有看到日志中的任何错误,只有您可以通过添加环境变量来避免的警告:

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

例外:尝试手动设置纱线的火花配置:http://badrit.com/blog/2015/29/running-spark-on-yarn#.wd_e66irjsm

hdfs dfs -mkdir -p  /user/spark/share/lib<br>
hdfs dfs -put $SPARK_HOME/assembly/lib/spark-assembly_*.jar        /user/spark/share/lib/spark-assembly.jar<br>
export SPARK_JAR=hdfs://your-server:port/user/spark/share/lib/spark-assembly.jar

希望这个帮助。

在我的情况下,Spark用户帐户无法读取/重复到hadoop_home中,因此无法读取core-site.xml。

spark@ubuntu$ ls -lrt /opt/hadoop/
ls: cannot open directory '/opt/hadoop/': Permission denied    <--- Cannot read the directory
spark@ubuntu$ ls -lrt /opt
total 20
drwxrwx--- 3 hadoop  1003 4096 Jun 18 20:38 hadoop             <---- Invalid group
drwxr-xr-x 3 spark  spark 4096 Jun 19 04:24 spark

建议运行ls -la $HADOOP_CONF_DIR,以确保提交Spark作业的帐户可以读取Core-site.xml。

相关内容

  • 没有找到相关文章

最新更新