我使用Viola Jones方法来检测人脸,每当人脸倾斜时,算法都有可能无法正常工作。
我想检测一下那个动作,当它无法检测到人脸的时候。
我可以使用运动检测来实现这一点吗?或者有其他方法可以找到运动吗。
提前感谢,
是的,您可以通过捕获和比较它们来实现。
这将帮助你检测它们,然后你可以比较x和y的位置。
class DetectNose extends JPanel implements KeyListener, ActionListener {
private static final long serialVersionUID = 1L;
private static JFrame frame;
private BufferedImage image;
private CascadeClassifier face_cascade;
private Point center;
private JLabel label;
private Image scalledItemImage;
private double customY = 0;
private double customX = 0;
private Iterator<InputStream> iterator;
private ArrayList<BufferedImage> listOfCachedImages;
private int imageIndex = 1;
private int customZ = 0;
private Size size;
private Image scalledItemImageBackup;
private Point center1;
private int imgSize = 35;
private boolean isLocked;
public DetectNose(JFrame frame, List<Long> listOfOrnaments) {
super();
this.frame = frame;
this.frame.setFocusable(true);
this.frame.requestFocusInWindow();
this.frame.addKeyListener(this);
File f = null;
try {
System.out.println(System.getProperty("os.name"));
if (System.getProperty("os.name").contains("Windows")) {
f = new File("res/opencv_lib_win/opencv_java249.dll");
System.load(f.getAbsolutePath());
System.out.println("Loaded :" + f.getAbsolutePath());
} else {
f = new File("res/opencv_lib/libopencv_java246.so");
System.load(f.getAbsolutePath());
System.out.println("Loaded :" + f.getAbsolutePath());
}
} catch (Exception ex) {
ex.printStackTrace();
}
List<InputStream> ornaments = DatabaseHandler
.getOrnamentsImagesByListOfOrnaments(listOfOrnaments);
iterator = ornaments.iterator();
listOfCachedImages = new ArrayList<BufferedImage>();
try {
while (iterator.hasNext()) {
InputStream inputStream = iterator.next();
listOfCachedImages.add(ImageIO.read(inputStream));
}
setFirstOrnament();
} catch (IOException e) {
e.printStackTrace();
}
label = new JLabel(new ImageIcon(scalledItemImage));
add(label);
face_cascade = new CascadeClassifier(
"res/cascades/haarcascade_frontalface_alt_tree.xml");
if (face_cascade.empty()) {
System.out.println("--(!)Error loading An");
return;
} else {
System.out.println("Face classifier loaded up");
}
}
private void setFirstOrnament() {
scalledItemImage = listOfCachedImages.get(imageIndex - 1);
scalledItemImageBackup = scalledItemImage.getScaledInstance(700, 700,
BufferedImage.TYPE_INT_RGB);
scalledItemImage = scalledItemImage.getScaledInstance(imgSize, imgSize,
BufferedImage.TYPE_INT_RGB);
repaint();
System.out.println("imageIndex = " + imageIndex);
}
private void setPrevOrnament() {
if (imageIndex > 1) {
imageIndex--;
scalledItemImage = listOfCachedImages.get(imageIndex - 1);
scalledItemImageBackup = scalledItemImage.getScaledInstance(700,
700, BufferedImage.TYPE_INT_RGB);
scalledItemImage = scalledItemImage.getScaledInstance(imgSize,
imgSize, BufferedImage.TYPE_INT_RGB);
GoLiveIntermediator.nextButton.setEnabled(true);
repaint();
revalidate();
System.out.println("imageIndex = " + imageIndex);
} else {
GoLiveIntermediator.prevButton.setEnabled(false);
}
}
private void setNextOrnament() {
if (listOfCachedImages.size() > imageIndex) {
imageIndex++;
scalledItemImage = listOfCachedImages.get(imageIndex - 1);
scalledItemImageBackup = scalledItemImage.getScaledInstance(700,
700, BufferedImage.TYPE_INT_RGB);
scalledItemImage = scalledItemImage.getScaledInstance(imgSize,
imgSize, BufferedImage.TYPE_INT_RGB);
GoLiveIntermediator.prevButton.setEnabled(true);
repaint();
revalidate();
System.out.println("imageIndex = " + imageIndex);
} else {
GoLiveIntermediator.nextButton.setEnabled(false);
}
}
private BufferedImage getimage() {
return image;
}
public void setimage(BufferedImage newimage) {
image = newimage;
return;
}
public BufferedImage matToBufferedImage(Mat matrix) {
int cols = matrix.cols();
int rows = matrix.rows();
int elemSize = (int) matrix.elemSize();
byte[] data = new byte[cols * rows * elemSize];
int type;
matrix.get(0, 0, data);
switch (matrix.channels()) {
case 1:
type = BufferedImage.TYPE_BYTE_GRAY;
break;
case 3:
type = BufferedImage.TYPE_3BYTE_BGR;
// bgr to rgb
byte b;
for (int i = 0; i < data.length; i = i + 3) {
b = data[i];
data[i] = data[i + 2];
data[i + 2] = b;
}
break;
default:
return null;
}
BufferedImage image2 = new BufferedImage(cols, rows, type);
image2.getRaster().setDataElements(0, 0, cols, rows, data);
return image2;
}
public void paintComponent(Graphics g) {
try {
this.frame.requestFocusInWindow();
BufferedImage temp = getimage();
g.drawImage(temp, 0, 0, temp.getWidth(), temp.getHeight() + 50,
this);
} catch (Exception ex) {
System.out.print("Trying to load images...");
}
}
public Mat detect(Mat inputframe) {
Mat mRgba = new Mat();
Mat mGrey = new Mat();
MatOfRect faces = new MatOfRect();
inputframe.copyTo(mRgba);
inputframe.copyTo(mGrey);
Imgproc.cvtColor(mRgba, mGrey, Imgproc.COLOR_BGR2GRAY);
Imgproc.equalizeHist(mGrey, mGrey);
try {
face_cascade.detectMultiScale(mGrey, faces);
} catch (Exception e) {
System.out.print(".");
}
frame.setLocationRelativeTo(null);
frame.setResizable(false);
for (Rect rect : faces.toArray()) {
center = new Point(rect.x + rect.width * 0.5, rect.y + rect.height
* 0.5); // You can use this to point out as first detection and last detection
size = new Size(rect.width * 0.5, rect.height * 0.5);
Core.ellipse(mRgba, center, size, 0, 0, 360, new Scalar(255, 0,
255), 1, 8, 0);
repaint();
}
return mRgba;
}
这里中心是第一个检测点,与您从图像中找到最后一个检测点的方式相同。