如何使用JS Webaudioapi进行节拍检测



我有兴趣使用JavaScript WebAudioAPI检测歌曲节奏,然后在画布中渲染。

我可以处理帆布部分,但是我不是一个大的音频人,真的不明白如何在JavaScript中制作节拍探测器。

我尝试了本文,但对于我的生命而言,我无法将每个函数之间的点连接到功能性程序。

我知道我应该向您展示一些代码,但老实说我没有任何代码,我所有的尝试都失败了,并且在前提到的文章中的相关代码。

无论如何,我真的很感谢一些指导,或者甚至更好地检测到如何实际检测WebAudioAPI的歌曲的演示。

谢谢!

关于 Joe Sullivan 的引用文章的主要内容是,即使它提供了很多源代码,但它远非最终和完整的代码。要达到工作解决方案,您仍然需要一些编码和调试技能。

此答案从参考文章中汲取了大部分代码,原始许可在适当的地方适用。

以下是用于使用上面文章所描述的功能的幼稚示例实现,您仍然需要找出正确的阈值。


该代码包括为答案编写的准备代码:

  • 通过FileReader API读取本地文件
  • 使用AudioContext API
  • 将文件解码为音频数据

,然后如文章所述:

  • 过滤音频,在此示例中使用低通滤波器
  • 使用阈值计算峰
  • 分组间隔计数,然后速度计数

对于阈值,我使用了最大值和最小值之间的任意值的任意值为.98;分组时,我添加了一些额外的检查和任意舍入,以避免可能的无限循环,并使其成为易于删除的样本。

请注意,评论稀缺以保持样本实施简介,因为:

  • 引用文章中解释了处理背后的逻辑
  • 可以在相关方法的API文档中引用该语法

audio_file.onchange = function() {
  var file = this.files[0];
  var reader = new FileReader();
  var context = new(window.AudioContext || window.webkitAudioContext)();
  reader.onload = function() {
    context.decodeAudioData(reader.result, function(buffer) {
      prepare(buffer);
    });
  };
  reader.readAsArrayBuffer(file);
};
function prepare(buffer) {
  var offlineContext = new OfflineAudioContext(1, buffer.length, buffer.sampleRate);
  var source = offlineContext.createBufferSource();
  source.buffer = buffer;
  var filter = offlineContext.createBiquadFilter();
  filter.type = "lowpass";
  source.connect(filter);
  filter.connect(offlineContext.destination);
  source.start(0);
  offlineContext.startRendering();
  offlineContext.oncomplete = function(e) {
    process(e);
  };
}
function process(e) {
  var filteredBuffer = e.renderedBuffer;
  //If you want to analyze both channels, use the other channel later
  var data = filteredBuffer.getChannelData(0);
  var max = arrayMax(data);
  var min = arrayMin(data);
  var threshold = min + (max - min) * 0.98;
  var peaks = getPeaksAtThreshold(data, threshold);
  var intervalCounts = countIntervalsBetweenNearbyPeaks(peaks);
  var tempoCounts = groupNeighborsByTempo(intervalCounts);
  tempoCounts.sort(function(a, b) {
    return b.count - a.count;
  });
  if (tempoCounts.length) {
    output.innerHTML = tempoCounts[0].tempo;
  }
}
// http://tech.beatport.com/2014/web-audio/beat-detection-using-web-audio/
function getPeaksAtThreshold(data, threshold) {
  var peaksArray = [];
  var length = data.length;
  for (var i = 0; i < length;) {
    if (data[i] > threshold) {
      peaksArray.push(i);
      // Skip forward ~ 1/4s to get past this peak.
      i += 10000;
    }
    i++;
  }
  return peaksArray;
}
function countIntervalsBetweenNearbyPeaks(peaks) {
  var intervalCounts = [];
  peaks.forEach(function(peak, index) {
    for (var i = 0; i < 10; i++) {
      var interval = peaks[index + i] - peak;
      var foundInterval = intervalCounts.some(function(intervalCount) {
        if (intervalCount.interval === interval) return intervalCount.count++;
      });
      //Additional checks to avoid infinite loops in later processing
      if (!isNaN(interval) && interval !== 0 && !foundInterval) {
        intervalCounts.push({
          interval: interval,
          count: 1
        });
      }
    }
  });
  return intervalCounts;
}
function groupNeighborsByTempo(intervalCounts) {
  var tempoCounts = [];
  intervalCounts.forEach(function(intervalCount) {
    //Convert an interval to tempo
    var theoreticalTempo = 60 / (intervalCount.interval / 44100);
    theoreticalTempo = Math.round(theoreticalTempo);
    if (theoreticalTempo === 0) {
      return;
    }
    // Adjust the tempo to fit within the 90-180 BPM range
    while (theoreticalTempo < 90) theoreticalTempo *= 2;
    while (theoreticalTempo > 180) theoreticalTempo /= 2;
    var foundTempo = tempoCounts.some(function(tempoCount) {
      if (tempoCount.tempo === theoreticalTempo) return tempoCount.count += intervalCount.count;
    });
    if (!foundTempo) {
      tempoCounts.push({
        tempo: theoreticalTempo,
        count: intervalCount.count
      });
    }
  });
  return tempoCounts;
}
// http://stackoverflow.com/questions/1669190/javascript-min-max-array-values
function arrayMin(arr) {
  var len = arr.length,
    min = Infinity;
  while (len--) {
    if (arr[len] < min) {
      min = arr[len];
    }
  }
  return min;
}
function arrayMax(arr) {
  var len = arr.length,
    max = -Infinity;
  while (len--) {
    if (arr[len] > max) {
      max = arr[len];
    }
  }
  return max;
}
<input id="audio_file" type="file" accept="audio/*"></input>
<audio id="audio_player"></audio>
<p>
  Most likely tempo: <span id="output"></span>
</p>

我在这里写了一个教程,该教程显示了如何使用JavaScript Web Audio API进行此操作。

https://askmacgyver.com/blog/tutorial/how-to-implement-tempo-detection-in-your-application

步骤概述

  1. 将音频文件转换为数组缓冲区
  2. 通过低通滤波器运行数组缓冲区
  3. 将阵列缓冲区的10秒剪辑修剪
  4. down示例数据
  5. 数据归一化
  6. 计数卷分组
  7. 从分组计数推断速度

下面的此代码进行繁重。

将音频文件加载到数组缓冲区中,并通过低通滤波器

运行
function createBuffers(url) {
 // Fetch Audio Track via AJAX with URL
 request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.responseType = 'arraybuffer';
 request.onload = function(ajaxResponseBuffer) {
    // Create and Save Original Buffer Audio Context in 'originalBuffer'
    var audioCtx = new AudioContext();
    var songLength = ajaxResponseBuffer.total;
    // Arguments: Channels, Length, Sample Rate
    var offlineCtx = new OfflineAudioContext(1, songLength, 44100);
    source = offlineCtx.createBufferSource();
    var audioData = request.response;
    audioCtx.decodeAudioData(audioData, function(buffer) {
         window.originalBuffer = buffer.getChannelData(0);
         var source = offlineCtx.createBufferSource();
         source.buffer = buffer;
         // Create a Low Pass Filter to Isolate Low End Beat
         var filter = offlineCtx.createBiquadFilter();
         filter.type = "lowpass";
         filter.frequency.value = 140;
         source.connect(filter);
         filter.connect(offlineCtx.destination);
            // Render this low pass filter data to new Audio Context and Save in 'lowPassBuffer'
            offlineCtx.startRendering().then(function(lowPassAudioBuffer) {
             var audioCtx = new(window.AudioContext || window.webkitAudioContext)();
             var song = audioCtx.createBufferSource();
             song.buffer = lowPassAudioBuffer;
             song.connect(audioCtx.destination);
             // Save lowPassBuffer in Global Array
             window.lowPassBuffer = song.buffer.getChannelData(0);
             console.log("Low Pass Buffer Rendered!");
            });
        },
        function(e) {});
 }
 request.send();
}

createBuffers('https://askmacgyver.com/test/Maroon5-Moves-Like-Jagger-128bpm.mp3');

您现在有一个低通滤波的歌曲(和原始)

的数组缓冲区

它由许多条目组成,采样(44100乘以歌曲的秒数)。

window.lowPassBuffer  // Low Pass Array Buffer
window.originalBuffer // Original Non Filtered Array Buffer

修剪歌曲

的10秒剪辑
function getClip(length, startTime, data) {
  var clip_length = length * 44100;
  var section = startTime * 44100;
  var newArr = [];
  for (var i = 0; i < clip_length; i++) {
     newArr.push(data[section + i]);
  }
  return newArr;
}
// Overwrite our array buffer to a 10 second clip starting from 00:10s
window.lowPassFilter = getClip(10, 10, lowPassFilter);

down示例剪辑

function getSampleClip(data, samples) {
  var newArray = [];
  var modulus_coefficient = Math.round(data.length / samples);
  for (var i = 0; i < data.length; i++) {
     if (i % modulus_coefficient == 0) {
         newArray.push(data[i]);
     }
  }
  return newArray;
}
// Overwrite our array to down-sampled array.
lowPassBuffer = getSampleClip(lowPassFilter, 300);

标准化您的数据

function normalizeArray(data) {
 var newArray = [];
 for (var i = 0; i < data.length; i++) {
     newArray.push(Math.abs(Math.round((data[i + 1] - data[i]) * 1000)));
 }
 return newArray;
}
// Overwrite our array to the normalized array
lowPassBuffer = normalizeArray(lowPassBuffer);

计数平面分组

function countFlatLineGroupings(data) {
 var groupings = 0;
 var newArray = normalizeArray(data);
 function getMax(a) {
    var m = -Infinity,
        i = 0,
        n = a.length;
    for (; i != n; ++i) {
        if (a[i] > m) {
            m = a[i];
        }
    }
    return m;
 }
 function getMin(a) {
    var m = Infinity,
        i = 0,
        n = a.length;
    for (; i != n; ++i) {
        if (a[i] < m) {
            m = a[i];
        }
    }
    return m;
 }
 var max = getMax(newArray);
 var min = getMin(newArray);
 var count = 0;
 var threshold = Math.round((max - min) * 0.2);
 for (var i = 0; i < newArray.length; i++) {
   if (newArray[i] > threshold && newArray[i + 1] < threshold && newArray[i + 2] < threshold && newArray[i + 3] < threshold && newArray[i + 6] < threshold) {
        count++;
    }
 }
 return count;
}
// Count the Groupings
countFlatLineGroupings(lowPassBuffer);

比例10秒分组计数至60秒,以得出每分钟节拍

var final_tempo = countFlatLineGroupings(lowPassBuffer);
// final_tempo will be 21
final_tempo = final_tempo * 6;
console.log("Tempo: " + final_tempo);
// final_tempo will be 126

相关内容

  • 没有找到相关文章

最新更新