在 mnist 数据集上很少的 epoch 之后,测试集的准确性非常高



这个模型用很少的纪元学会了非常快速地将 1 和 0 分类,这让我认为有些地方是错误的。

下面的代码下载 mnist 数据集,提取仅包含 1 或 0 的 mnist 图像。从此 mnist 图像子集中选择大小为 200 的随机样本。此随机样本是训练模型的数据集。模型只需 2 个 epoch,即可达到 90%+ 的测试集准确度,这是预期行为吗?我预计需要更多的时期来训练模型以达到这种水平的测试集精度。

型号代码 :

%reset -f
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data_utils
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from matplotlib import pyplot
from pandas import DataFrame
import torchvision.datasets as dset
import os
import torch.nn.functional as F
import time
import random
import pickle
from sklearn.metrics import confusion_matrix
import pandas as pd
import sklearn

trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
root = './data'
if not os.path.exists(root):
    os.mkdir(root)
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True)
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True)
batch_size = 64
train_loader = torch.utils.data.DataLoader(
                 dataset=train_set,
                 batch_size=batch_size,
                 shuffle=True)
test_loader = torch.utils.data.DataLoader(
                dataset=test_set,
                batch_size=batch_size,
shuffle=True)
class NeuralNet(nn.Module):
    def __init__(self):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(28*28, 500)
        self.fc2 = nn.Linear(500, 256)
        self.fc3 = nn.Linear(256, 2)
    def forward(self, x):
        x = x.view(-1, 28*28)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
num_epochs = 2
random_sample_size = 200
values_0_or_1 = [t for t in train_set if (int(t[1]) == 0 or int(t[1]) == 1)]
values_0_or_1_testset = [t for t in test_set if (int(t[1]) == 0 or int(t[1]) == 1)]
print(len(values_0_or_1))
print(len(values_0_or_1_testset))
train_loader_subset = torch.utils.data.DataLoader(
                 dataset=values_0_or_1,
                 batch_size=batch_size,
                 shuffle=True)
test_loader_subset = torch.utils.data.DataLoader(
                 dataset=values_0_or_1_testset,
                 batch_size=batch_size,
                 shuffle=False)
train_loader = train_loader_subset
# Hyper-parameters 
input_size = 100
hidden_size = 100
num_classes = 2
# learning_rate = 0.00001
learning_rate = .0001
# Device configuration
device = 'cpu'
print_progress_every_n_epochs = 1
model = NeuralNet().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  
N = len(train_loader)
# Train the model
total_step = len(train_loader)
most_recent_prediction = []
test_actual_predicted_dict = {}
rm = random.sample(list(values_0_or_1), random_sample_size)
train_loader_subset = data_utils.DataLoader(rm, batch_size=4)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader_subset):  
        # Move tensors to the configured device
        images = images.reshape(-1, 2).to(device)
        labels = labels.to(device)
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    if (epoch) % print_progress_every_n_epochs == 0:
        print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

predicted_test = []
model.eval()  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
probs_l = []
predicted_values = []
actual_values = []
labels_l = []
with torch.no_grad():
    for images, labels in test_loader_subset:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        predicted_test.append(predicted.cpu().numpy())
        sm = torch.nn.Softmax()
        probabilities = sm(outputs) 
        probs_l.append(probabilities)  
        labels_l.append(labels.cpu().numpy())
    predicted_values.append(np.concatenate(predicted_test).ravel())
    actual_values.append(np.concatenate(labels_l).ravel())
if (epoch) % 1 == 0:
    print('test accuracy : ', 100 * len((np.where(np.array(predicted_values[0])==(np.array(actual_values[0])))[0])) / len(actual_values[0]))

模型输出(12665和2115表示训练集和测试集大小):

12665
2115
Epoch [1/2], Step [50/198], Loss: 0.1256
Epoch [2/2], Step [50/198], Loss: 0.0151
test accuracy :  99.76359338061465
/anaconda3/envs/pytorch/lib/python3.7/site-packages/ipykernel_launcher.py:143: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
这是我

对你的二进制实验的 2 美分。

看起来你已经大大降低了数据集的复杂性,并且随着中间层中大量的神经元,你的模型有望很快收敛。

请注意,MNIST 数据集的通道为 1,这使得任务非常简单。

您可以尝试使用CIFAR10,看看您是否在短短 2 个时期内仍然获得高精度。

这不是一个特别好的问题,因为预期的内容完全是主观的。话虽如此,并不感到惊讶,因为01是非常不同的数字。例如,0的背景被前景包围,而1没有 - 这是区分两者的几乎绝对可靠的测试。作为健全性检查,我会将0换成7,这类似于1。我希望看到成功率显着降低。话虽如此,这是一个健全性检查 - 即使它通过,您的方法中仍然存在错误或错误。

最新更新