我为单个股票投资组合创建了一个蒙特卡罗模拟,并希望计算并理想地显示某些分位数。例如,在我的示例中,我有 1000 次运行,并希望计算结果的 95% 分位数 (t252(。
import pandas_datareader.data as web
import pandas as pd
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import quandl
style.use('ggplot')
quandl.ApiConfig.api_key = 'dnyYEnFxwxxxxxxxxxxx'
prices = quandl.get(dataset='WIKI/AAPL',start_date='2000-01-01',end_date='2010-12-31')['Close']
returns = prices.pct_change()
last_price = prices[-1]
num_simulations = 1000
num_days = 252
simulation_df = pd.DataFrame()
for x in range(num_simulations):
count = 0
daily_vol = returns.std()
price_series = []
price = last_price * (1 + np.random.normal(0, daily_vol))
price_series.append(price)
for y in range(num_days):
if count == 251:
break
price = price_series[count] * (1 + np.random.normal(0, daily_vol))
price_series.append(price)
count += 1
simulation_df[x] = price_series
fig = plt.figure()
plt.plot(simulation_df)
plt.axhline(y = last_price, color = 'r', linestyle = '-')
plt.show()
有人可以告诉我最好的方法是什么吗?我尝试了熊猫分位数函数,但不幸的是没有走多远。
提前非常感谢!
熊猫分位数函数是要走的路。如果你想要 252 个值(即每天的 .95 分位数(,你可以使用 axis 参数:
simulation_df.quantile(.95, axis=1)
如果您只想快速概览,请转置并使用描述函数:
simulation_df.T.describe(percentiles=[.95, .75, .5, .25, .05])