我正在尝试将决策树与特征和标签矩阵相匹配。这是我的代码:
print FEATURES_DATA[0]
print ""
print TARGET[0]
print ""
print np.unique(list(map(len, FEATURES_DATA[0])))
它给出了以下输出:
[ array([[3, 3, 3, ..., 7, 7, 7],
[3, 3, 3, ..., 7, 7, 7],
[3, 3, 3, ..., 7, 7, 7],
...,
[2, 2, 2, ..., 6, 6, 6],
[2, 2, 2, ..., 6, 6, 6],
[2, 2, 2, ..., 6, 6, 6]], dtype=uint8)]
[ array([[31],
[31],
[31],
...,
[22],
[22],
[22]], dtype=uint8)]
[463511]
矩阵实际上包含463511个样本。
此后,我运行以下块:
from sklearn.tree import DecisionTreeClassifier
for i in xrange(5):
Xtrain=FEATURES_DATA[i]
Ytrain=TARGET[i]
clf=DecisionTreeClassifier()
clf.fit(Xtrain,Ytrain)
这给了我以下错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-4-3d8b2a7a3e5f> in <module>()
4 Ytrain=TARGET[i]
5 clf=DecisionTreeClassifier()
----> 6 clf.fit(Xtrain,Ytrain)
C:Userssinghg2AppDataLocalEnthoughtCanopyUserlibsite-packagessklearntreetree.pyc in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
152 random_state = check_random_state(self.random_state)
153 if check_input:
--> 154 X = check_array(X, dtype=DTYPE, accept_sparse="csc")
155 if issparse(X):
156 X.sort_indices()
C:Userssinghg2AppDataLocalEnthoughtCanopyUserlibsite-packagessklearnutilsvalidation.pyc in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
371 force_all_finite)
372 else:
--> 373 array = np.array(array, dtype=dtype, order=order, copy=copy)
374
375 if ensure_2d:
ValueError: setting an array element with a sequence.
我在SO上搜索了其他帖子,发现大多数答案是矩阵不是完全的数字,或者数组在样本之间的长度不同。但是,我的问题不是这种情况吗?
有什么帮助吗?
如果print FEATURES_DATA[0]
实际打印
[ array([[3, 3, 3, ..., 7, 7, 7],
[3, 3, 3, ..., 7, 7, 7],
[3, 3, 3, ..., 7, 7, 7],
...,
[2, 2, 2, ..., 6, 6, 6],
[2, 2, 2, ..., 6, 6, 6],
[2, 2, 2, ..., 6, 6, 6]], dtype=uint8)]
那么问题就在于FEATURES_DATA[0]是一个Python列表,里面有一个Numpy数组。(你可以从[
和]
中理解)
您可以选择列表的第一个(也是唯一的)元素来修复它
from sklearn.tree import DecisionTreeClassifier
for i in xrange(5):
Xtrain=FEATURES_DATA[i][0]
Ytrain=TARGET[i][0]
clf=DecisionTreeClassifier()
clf.fit(Xtrain,Ytrain)