我想拿一列并使用字符拆分字符串。与往常一样,我知道该方法拆分将返回列表,但是在编码时,我发现返回对象只有getItem或getfield,其中包含来自API的以下说明:
@since(1.3) def getItem(self, key): """ An expression that gets an item at position ``ordinal`` out of a list, or gets an item by key out of a dict. @since(1.3) def getField(self, name): """ An expression that gets a field by name in a StructField.
显然,这不符合我的要求,例如,对于" A_B_C_D"列中的文本,我想在两个不同的列中分配" A_B_C_"one_answers" D"。
这是我正在使用的代码
from pyspark.sql.functions import regexp_extract, col, split
df_test=spark.sql("SELECT * FROM db_test.table_test")
#Applying the transformations to the data
split_col=split(df_test['Full_text'],'_')
df_split=df_test.withColumn('Last_Item',split_col.getItem(3))
找到一个示例:
from pyspark.sql import Row
from pyspark.sql.functions import regexp_extract, col, split
l = [("Item1_Item2_ItemN"),("FirstItem_SecondItem_LastItem"),("ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn")]
rdd = sc.parallelize(l)
datax = rdd.map(lambda x: Row(fullString=x))
df = sqlContext.createDataFrame(datax)
split_col=split(df['fullString'],'_')
df=df.withColumn('LastItemOfSplit',split_col.getItem(2))
结果:
fullString LastItemOfSplit
Item1_Item2_ItemN ItemN
FirstItem_SecondItem_LastItem LastItem
ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn null
我的预期结果将永远拥有最后一项
fullString LastItemOfSplit
Item1_Item2_ItemN ItemN
FirstItem_SecondItem_LastItem LastItem
ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn ThisShouldBeInTheLastColumn
您可以使用getItem(size - 1)
从数组中获取最后一项:
示例:
df = spark.createDataFrame([[['A', 'B', 'C', 'D']], [['E', 'F']]], ['split'])
df.show()
+------------+
| split|
+------------+
|[A, B, C, D]|
| [E, F]|
+------------+
import pyspark.sql.functions as F
df.withColumn('lastItem', df.split.getItem(F.size(df.split) - 1)).show()
+------------+--------+
| split|lastItem|
+------------+--------+
|[A, B, C, D]| D|
| [E, F]| F|
+------------+--------+
对于您的情况:
from pyspark.sql.functions import regexp_extract, col, split, size
df_test=spark.sql("SELECT * FROM db_test.table_test")
#Applying the transformations to the data
split_col=split(df_test['Full_text'],'_')
df_split=df_test.withColumn('Last_Item',split_col.getItem(size(split_col) - 1))
您可以将正则表达模式传递给split
。
以下可用于您的示例:
from pyspark.sql.functions split
split_col=split(df['fullString'], r"_(?=.+$)")
df = df.withColumn('LastItemOfSplit', split_col.getItem(1))
df.show(truncate=False)
#+--------------------------------------------------------+---------------------------+
#|fullString |LastItemOfSplit |
#+--------------------------------------------------------+---------------------------+
#|Item1_Item2_ItemN |Item2 |
#|FirstItem_SecondItem_LastItem |SecondItem |
#|ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn|ThisShouldBeInTheLastColumn|
#+--------------------------------------------------------+---------------------------+
模式表示以下内容:
-
_
字面的下划线 -
(?=.+$)
阳性近距离预先实现任何事物(.
),直到字符串结束$
这将在最后一个下划线上拆分字符串。然后致电.getItem(1)
在结果列表中以索引1获取项目。